48 research outputs found

    Multiresolution wavelet framework models brightness induction effects

    Get PDF
    A new multiresolution wavelet model is presented here, which accounts for brightness assimilation and contrast effects in a unified framework, and includes known psychophysical and physiological attributes of the primate visual system (such as spatial frequency channels, oriented receptive fields, contrast sensitivity function, contrast non-linearities, and a unified set of parameters). Like other low-level models, such as the ODOG model [Blakeslee, B., & McCourt, M. E. (1999). A multiscale spatial filtering account of the white effect, simultaneous brightness contrast and grating induction. Vision Research, 39, 4361-4377], this formulation reproduces visual effects such as simultaneous contrast, the White effect, grating induction, the Todorović effect, Mach bands, the Chevreul effect and the Adelson-Logvinenko tile effects, but it also reproduces other previously unexplained effects such as the dungeon illusion, all using a single set of parameters

    Low-level spatiochromatic grouping for saliency estimation

    Get PDF
    We propose a saliency model termed SIM (saliency by induction mechanisms), which is based on a low-level spatiochromatic model that has successfully predicted chromatic induction phenomena. In so doing, we hypothesize that the low-level visual mechanisms that enhance or suppress image detail are also responsible for making some image regions more salient. Moreover, SIM adds geometrical grouplets to enhance complex low-level features such as corners, and suppress relatively simpler features such as edges. Since our model has been fitted on psychophysical chromatic induction data, it is largely nonparametric. SIM outperforms state-of-the-art methods in predicting eye fixations on two datasets and using two metrics

    Saliency estimation using a non-parametric low-level vision model

    Get PDF
    Many successful models for predicting attention in a scene involve three main steps: convolution with a set of filters, a center-surround mechanism and spatial pooling to construct a saliency map. However, integrating spatial information and justifying the choice of various parameter values remain open problems. In this paper we show that an efficient model of color appearance in human vision, which contains a principled selection of parameters as well as an innate spatial pooling mechanism, can be generalized to obtain a saliency model that outperforms state-of-the-art models. Scale integration is achieved by an inverse wavelet transform over the set of scale-weighted center-surround responses. The scale-weighting function (termed ECSF) has been optimized to better replicate psychophysical data on color appearance, and the appropriate sizes of the center-surround inhibition windows have been determined by training a Gaussian Mixture Model on eye-fixation data, thus avoiding ad-hoc parameter selection. Additionally, we conclude that the extension of a color appearance model to saliency estimation adds to the evidence for a common low-level visual front-end for different visual tasks

    Perception based representations for computational colour

    Get PDF
    The perceived colour of a stimulus is dependent on multiple factors stemming out either from the context of the stimulus or idiosyncrasies of the observer. The complexity involved in combining these multiple effects is the main reason for the gap between classical calibrated colour spaces from colour science and colour representations used in computer vision, where colour is just one more visual cue immersed in a digital image where surfaces, shadows and illuminants interact seemingly out of control. With the aim to advance a few steps towards bridging this gap we present some results on computational representations of colour for computer vision. They have been developed by introducing perceptual considerations derived from the interaction of the colour of a point with its context. We show some techniques to represent the colour of a point influenced by assimilation and contrast effects due to the image surround and we show some results on how colour saliency can be derived in real images. We outline a model for automatic assignment of colour names to image points directly trained on psychophysical data. We show how colour segments can be perceptually grouped in the image by imposing shading coherence in the colour space

    Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

    Get PDF
    Massive X-ray binaries are usually classified depending on the properties of the donor star in classical, supergiant and Be X-ray binaries. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_inf) of ~350 km/s, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of 9.5591 d with maximum X-ray flux at MJD 51856.6. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15. Moreover, the low value of v_inf solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53 2790, which is probably an O9.5 V star. We note that changes in v_inf and/or the mass-loss rate of the primary alone cannot explain the diferent patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries. (Abridged)Comment: 12 pages, 9 figures; to appear in A&A; corrected typos, updated references; matches published versio

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    A Corticothalamic Circuit Model for Sound Identification in Complex Scenes

    Get PDF
    The identification of the sound sources present in the environment is essential for the survival of many animals. However, these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple sources. The identification of a source under these circumstances is a complex computational problem that is readily solved by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal

    Early life risk factors and their cumulative effects as predictors of overweight in Spanish children

    Get PDF
    Objectives: To explore early life risk factors of overweight/obesity at age 6 years and their cumulative effects on overweight/obesity at ages 2, 4 and 6 years. Methods: Altogether 1031 Spanish children were evaluated at birth and during a 6-year follow-up. Early life risk factors included: parental overweight/obesity, parental origin/ethnicity, maternal smoking during pregnancy, gestational weight gain, gestational age, birth weight, caesarean section, breastfeeding practices and rapid infant weight gain collected via hospital records. Cumulative effects were assessed by adding up those early risk factors that significantly increased the risk of overweight/obesity. We conducted binary logistic regression models. Results: Rapid infant weight gain (OR 2.29, 99% CI 1.54–3.42), maternal overweight/obesity (OR 1.93, 99% CI 1.27–2.92), paternal overweight/obesity (OR 2.17, 99% CI 1.44–3.28), Latin American/Roma origin (OR 3.20, 99% CI 1.60–6.39) and smoking during pregnancy (OR 1.61, 99% CI 1.01–2.59) remained significant after adjusting for confounders. A higher number of early life risk factors accumulated was associated with overweight/obesity at age 6 years but not at age 2 and 4 years. Conclusions: Rapid infant weight gain, parental overweight/obesity, maternal smoking and origin/ethnicity predict childhood overweight/obesity and present cumulative effects. Monitoring children with rapid weight gain and supporting a healthy parental weight are important for childhood obesity prevention

    A theory of how active behavior stabilises neural activity: neural gain modulation by closed-loop environmental feedback

    Get PDF
    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone
    corecore