5,683 research outputs found

    Time-reversal symmetry breaking and gapped surface states due to spontaneous emergence of new order in dd-wave nanoislands

    Get PDF
    We solve the Bogoliubov-de Gennes equations self-consistently for the dd-wave order parameter in nanoscale dd-wave systems with [110] surfaces and show that spontaneous time-reversal symmetry (TRS) breaking occurs at low temperatures due to a spontaneously induced complex order parameter of extended ss-wave symmetry. The Andreev surface bound states, which are protected by a one-dimensional (1D) topological invariant in the presence of TRS, are gapped by the emergence of this new order parameter. The extended ss-wave order parameter is localized within a narrow region near the surfaces, which is consistent with the fact that topological protection of the gapless Andreev surface states is characterized by the 1D topological invariant. In this TRS-breaking phase, not only is the complex order parameter induced, but also the dd-wave order parameter itself becomes complex. Furthermore, the disappearance of topological protection brings about novel vortex phenomena near the surfaces. We show that vortex-antivortex pairs are formed in the extended ss-wave order parameter along the surfaces if the side length of a nanoisland or the width of an infinitely long nanoribbon is relatively large.Comment: 6 pages, 4 figures + 6 pages (supplemental material), to be published in Phys. Rev. B Rapid communicatio

    Fully spin-dependent transport of triangular graphene flakes

    Get PDF
    The magnetic moment and spin-polarized electron transport properties of triangular graphene flakes surrounded by boron nitride sheets (BNC structures) are studied by using first-principles calculations based on density functional theory. Their dependence on the BNC structure is discussed, revealing that small isolated graphene flakes have large magnetic moment. When the BNC structure is suspended between graphene electrodes, the spin-polarized charge density distribution accumulates at the edge of the graphene flakes and no spin polarization is observed in the graphene electrodes. We also found that the BNC structure demonstrates perfectly spin-polarized transport properties in the wide energy window around the Fermi level. Our first-principles results indicate that the BNC structure provides new possibilities to electrically control spin

    PAPER DAUGHTERS

    Full text link

    Flying Buttresses

    Get PDF

    Crit\`ere pour l'int\'egralit\'e des coefficients de Taylor des applications miroir

    Full text link
    We give a necessary and sufficient condition for the integrality of the Taylor coefficients of mirror maps at the origin. By mirror maps, we mean formal power series z.exp(G(z)/F(z)), where F(z) and G(z)+log(z)F(z) are particular solutions of certain generalized hypergeometric differential equations. This criterion is based on the analytical properties of Landau's function (which is classically associated to the sequences of factorial ratios) and it generalizes results proved by Krattenthaler-Rivoal in "On the integrality of the Taylor coefficients of mirror maps" (to appear in Duke Math. J.). One of the techniques used to prove this criterion is a generalization of a theorem of Dwork on the formal congruences between formal series, which proved to be insufficient for our purposes

    Comparative study of macroscopic quantum tunneling in Bi_2Sr_2CaCu_2O_y intrinsic Josephson junctions with different device structures

    Get PDF
    We investigated macroscopic quantum tunneling (MQT) of Bi2_2Sr2_2CaCu2_2Oy_y intrinsic Josephson junctions (IJJs) with two device structures. One is a nanometer-thick small mesa structure with only two or three IJJs and the other is a stack of a few hundreds of IJJs on a narrow bridge structure. Experimental results of switching current distribution for the first switching events from zero-voltage state showed a good agreement with the conventional theory for a single Josephson junction, indicating that a crossover temperature from thermal activation to MQT regime for the former device structure was as high as that for the latter device structure. Together with the observation of multiphoton transitions between quantized energy levels in MQT regime, these results strongly suggest that the observed MQT behavior is intrinsic to a single IJJ in high-TcT_c cuprates, independent of device structures. The switching current distribution for the second switching events from the first resistive state, which were carefully distinguished from the first switchings, was also compared between two device structures. In spite of the difference in the heat transfer environment, the second switching events for both devices were found to show a similar temperature-independent behavior up to a much higher temperature than the crossover temperature for the first switching. We argue that it cannot be explained in terms of the self-heating owing to dissipative currents after the first switching. As possible candidates, the MQT process for the second switching and the effective increase of electronic temperature due to quasiparticle injection are discussed.Comment: 10pages, 7figures, submitted to Phys. Rev.

    Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots

    Full text link
    We study the electronic structure of a single self-assembled InAs quantum dot by probing elastic single-electron tunneling through a single pair of weakly coupled dots. In the region below pinch-off voltage, the non-linear threshold voltage behavior provides electronic addition energies exactly as the linear, Coulomb blockade oscillation does. By analyzing it, we identify the s and p shell addition spectrum for up to six electrons in the single InAs dot, i.e. one of the coupled dots. The evolution of shell addition spectrum with magnetic field provides Fock-Darwin spectra of s and p shell.Comment: 7 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Investigating the hard X-ray emission from the hottest Abell cluster A2163 with Suzaku

    Get PDF
    We present the results from Suzaku observations of the hottest Abell galaxy cluster A2163 at z=0.2z=0.2. To study the physics of gas heating in cluster mergers, we investigated hard X-ray emission from the merging cluster A2163, which hosts the brightest synchrotron radio halo. We analyzed hard X-ray spectra accumulated from two-pointed Suzaku observations. Non-thermal hard X-ray emission should result from the inverse Compton (IC) scattering of relativistic electrons by the CMB photons. To measure this emission, the dominant thermal emission in the hard X-ray band must be modeled in detail. To this end, we analyzed the combined broad-band X-ray data of A2163 collected by Suzaku and XMM-Newton, assuming single- and multi-temperature models for thermal emission and the power-law model for non-thermal emission. From the Suzaku data, we detected significant hard X-ray emission from A2163 in the 12-60 keV band at the 28σ28\sigma level (or at the 5.5σ5.5\sigma level if a systematic error is considered). The Suzaku HXD spectrum alone is consistent with the single-T thermal model of gas temperature kT=14kT=14 keV. From the XMM data, we constructed a multi-T model including a very hot (kT=18kT=18 keV) component in the NE region. Incorporating the multi-T and the power-law models into a two-component model with a radio-band photon index, the 12-60 keV energy flux of non-thermal emission is constrained within 5.3±0.9(±3.8)×1012 ergs1cm25.3 \pm 0.9 (\pm 3.8)\times 10^{-12}~{\rm erg\, s^{-1} cm^{-2}}. The 90% upper limit of detected IC emission is marginal (<1.2×1011 ergs1cm2< 1.2\times 10^{-11}~{\rm erg\, s^{-1} cm^{-2}} in the 12-60 keV). The estimated magnetic field in A2163 is B>0.098 μGB > 0.098~{\rm \mu G}. While the present results represent a three-fold increase in the accuracy of the broad band spectral model of A2163, more sensitive hard X-ray observations are needed to decisively test for the presence of hard X-ray emission due to IC emission.Comment: 7 pages, 7 figures, A&A accepted. Minor correctio
    corecore