2,968 research outputs found

    Lehmann rotation of cholesteric droplets subjected to a temperature gradient: role of the concentration of chiral molecules

    Get PDF
    International audienceWe present a systematic study of the Lehmann rotation of cholesteric droplets subjected to a temperature gradient when the concentration of chiral molecules is changed. The liquid crystal chosen is an eutectic mixture of 8CB and 8OCB doped with a small amount of the chiral molecule R811. The angular velocity of the droplets strongly depend on their size and on the concentration of chiral molecules. The Lehmann coefficient is estimated by using three different methods. Our results are consistent with a Lehmann coefficient proportional to the concentration of chiral molecules. We additionally show the existence of a critical size of the droplets below which they change texture and stop rotating

    Non-collinear Korringa-Kohn-Rostoker Green function method: Application to 3d nanostructures on Ni(001)

    Get PDF
    Magnetic nanostructures on non-magnetic or magnetic substrates have attracted strong attention due to the development of new experimental methods with atomic resolution. Motivated by this progress we have extended the full-potential Korringa-Kohn-Rostoker (KKR) Green function method to treat non-collinear magnetic nanostructures on surfaces. We focus on magnetic 3d impurity nanoclusters, sitting as adatoms on or in the first surface layer on Ni(001), and investigate the size and orientation of the local moments and moreover the stabilization of non-collinear magnetic solutions. While clusters of Fe, Co, Ni atoms are magnetically collinear, non-collinear magnetic coupling is expected for Cr and Mn clusters on surfaces of elemental ferromagnets. The origin of frustration is the competition of the antiferromagnetic exchange coupling among the Cr or Mn atoms with the antiferromagnetic (for Cr) or ferromagnetic (for Mn) exchange coupling between the impurities and the substrate. We find that Cr and Mn first-neighbouring dimers and a Mn trimer on Ni(001) show non-collinear behavior nearly degenerate with the most stable collinear configuration. Increasing the distance between the dimer atoms leads to a collinear behavior, similar to the one of the single impurities. Finally, we compare some of the non-collinear {\it ab-initio} results to those obtained within a classical Heisenberg model, where the exchange constants are fitted to total energies of the collinear states; the agreement is surprisingly good.Comment: 11 page

    Impacts of Three Timber Stand Improvement Thinning Options on Low Quality Southern Mixed-Hardwood Stands

    Get PDF
    The impact of three thinning options (strip, single-tree selection, and strip with selection between strips) on lowquality southern mixed-hardwood stands was evaluated in northern Alabama. Although stand level comparisons showed no significant differences between options, individual dominant trees benefitted from the thinning treatments, exhibiting increased basal area growth during the period of the study. Intermediate treatments such as these thinning options may provide landowners with sufficient growth of selected high-quality trees to warrant the more intensive management activities on similar sites as utilized in this study

    Undulation instabilities in the meniscus of smectic membranes

    Get PDF
    Using optical microscopy, phase shifting interferometry and atomic force microscopy, we demonstrate the existence of undulated structures in the meniscus of ferroelectric smectic-C* films. The meniscus is characterized by a periodic undulation of the smectic-air interface, which manifests itself in a striped pattern. The instability disappears in the untilted smectic-A phase. The modulation amplitude and wavelength both depend on meniscus thickness. We study the temperature evolution of the structure and propose a simple model that accounts for the observed undulations.Comment: Submitted to PR

    Theory and computation of directional nematic phase ordering

    Get PDF
    A computational study of morphological instabilities of a two-dimensional nematic front under directional growth was performed using a Landau-de Gennes type quadrupolar tensor order parameter model for the first-order isotropic/nematic transition of 5CB (pentyl-cyanobiphenyl). A previously derived energy balance, taking anisotropy into account, was utilized to account for latent heat and an imposed morphological gradient in the time-dependent model. Simulations were performed using an initially homeotropic isotropic/nematic interface. Thermal instabilities in both the linear and non-linear regimes were observed and compared to past experimental and theoretical observations. A sharp-interface model for the study of linear morphological instabilities, taking into account additional complexity resulting from liquid crystalline order, was derived. Results from the sharp-interface model were compared to those from full two-dimensional simulation identifying the specific limitations of simplified sharp-interface models for this liquid crystal system. In the nonlinear regime, secondary instabilities were observed to result in the formation of defects, interfacial heterogeneities, and bulk texture dynamics.Comment: first revisio

    Understanding complex magnetic order in disordered cobalt hydroxides through analysis of the local structure

    Full text link
    In many ostensibly crystalline materials, unit-cell-based descriptions do not always capture the complete physics of the system due to disruption in long-range order. In the series of cobalt hydroxides studied here, Co(OH)2−x_{2-x}(Cl)x_x(H2_2O)n_{n}, magnetic Bragg diffraction reveals a fully compensated N\'eel state, yet the materials show significant and open magnetization loops. A detailed analysis of the local structure defines the aperiodic arrangement of cobalt coordination polyhedra. Representation of the structure as a combination of distinct polyhedral motifs explains the existence of locally uncompensated moments and provides a quantitative agreement with bulk magnetic measurements and magnetic Bragg diffraction

    Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions

    Full text link
    The time evolution of a closed quantum system is connected to its Hamiltonian through Schroedinger's equation. The ability to estimate the Hamiltonian is critical to our understanding of quantum systems, and allows optimization of control. Though spectroscopic methods allow time-independent Hamiltonians to be recovered, for time-dependent Hamiltonians this task is more challenging. Here, using a single trapped ion, we experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. The method involves measuring the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. In our system the initially unknown Hamiltonian arises from transporting an ion through a static, near-resonant laser beam. Hamiltonian estimation allows us to estimate the spatial dependence of the laser beam intensity and the ion's velocity as a function of time. This work is of direct value in optimizing transport operations and transport-based gates in scalable trapped ion quantum information processing, while the estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high operational fidelities in quantum control.Comment: 10 pages, 8 figure
    • …
    corecore