5,667 research outputs found

    OPTIMAL ECONOMIC MANAGEMENT OF GROUNDWATER QUANTITY AND QUALITY: AN INTEGRATED APPROACH

    Get PDF
    A dynamic model is developed that jointly optimizes over groundwater quality and quantity for extractive municipal and non-extractive agricultural users. The model is applied to an aquifer in southern Ontario to analyze several policy scenarios, demonstrating that interactions between externalities can partially offset one another.Environmental Economics and Policy, Resource /Energy Economics and Policy,

    Non-collinear Korringa-Kohn-Rostoker Green function method: Application to 3d nanostructures on Ni(001)

    Get PDF
    Magnetic nanostructures on non-magnetic or magnetic substrates have attracted strong attention due to the development of new experimental methods with atomic resolution. Motivated by this progress we have extended the full-potential Korringa-Kohn-Rostoker (KKR) Green function method to treat non-collinear magnetic nanostructures on surfaces. We focus on magnetic 3d impurity nanoclusters, sitting as adatoms on or in the first surface layer on Ni(001), and investigate the size and orientation of the local moments and moreover the stabilization of non-collinear magnetic solutions. While clusters of Fe, Co, Ni atoms are magnetically collinear, non-collinear magnetic coupling is expected for Cr and Mn clusters on surfaces of elemental ferromagnets. The origin of frustration is the competition of the antiferromagnetic exchange coupling among the Cr or Mn atoms with the antiferromagnetic (for Cr) or ferromagnetic (for Mn) exchange coupling between the impurities and the substrate. We find that Cr and Mn first-neighbouring dimers and a Mn trimer on Ni(001) show non-collinear behavior nearly degenerate with the most stable collinear configuration. Increasing the distance between the dimer atoms leads to a collinear behavior, similar to the one of the single impurities. Finally, we compare some of the non-collinear {\it ab-initio} results to those obtained within a classical Heisenberg model, where the exchange constants are fitted to total energies of the collinear states; the agreement is surprisingly good.Comment: 11 page

    The Elite Brain Drain

    Get PDF
    We collect data on the movement and productivity of elite scientists. Their mobility is remarkable: nearly half of the world's most-cited physicists work outside their country of birth. We show they migrate systematically towards nations with large R&D spending. Our study cannot adjudicate on whether migration improves scientists' productivity, but we find that movers and stayers have identical h-index citations scores. Immigrants in the UK and US now win Nobel Prizes proportionately less often than earlier. US residents' h-indexes are relatively high. We describe a framework where a key role is played by low mobility costs in the modern world.mobility, science, brain drain, citations

    Lehmann rotation of cholesteric droplets subjected to a temperature gradient: role of the concentration of chiral molecules

    Get PDF
    International audienceWe present a systematic study of the Lehmann rotation of cholesteric droplets subjected to a temperature gradient when the concentration of chiral molecules is changed. The liquid crystal chosen is an eutectic mixture of 8CB and 8OCB doped with a small amount of the chiral molecule R811. The angular velocity of the droplets strongly depend on their size and on the concentration of chiral molecules. The Lehmann coefficient is estimated by using three different methods. Our results are consistent with a Lehmann coefficient proportional to the concentration of chiral molecules. We additionally show the existence of a critical size of the droplets below which they change texture and stop rotating

    Effects of Prescribed Burning on Vegetation and Fuel Loading in Three East Texas State Parks

    Get PDF
    -This study was conducted to evaluate the initial effectiveness of prescribed burning in the ecological restoration of forests within selected parks in east Texas. Twenty-four permanent plots were installed to monitor fuel loads, overstory, sapling, seedling, shrub and herbaceous layers within bum and control units of Mission Tejas, Tyler and Village Creek state parks. Measurements were taken during the summers of 1999 and 2000. Prescribed burning was conducted between these sampling periods in early spring 2ooo. Results indicated that the current applications of prescribed burning do not significantly influence vegetation or fuels. Sustained drought, prior management practices and imposed local bum bans reduced the window within which prescribed bums could be applied, and limited the effectiveness of the burns

    A systematic study of non-ideal contacts in integer quantum Hall systems

    Full text link
    In the present article we investigate the influence of the contact region on the distribution of the chemical potential in integer quantum Hall samples, as well as the longitudinal and Hall resistance as a function of the magnetic field. First we use a standard quantum Hall sample geometry and analyse the influence of the length of the leads where current enters/leaves the sample and the ratio of the contact width to the width of these leads. Furthermore we investigate potential barriers in the current injecting leads and the measurement arms in order to simulate non-ideal contacts. Second we simulate nonlocal quantum Hall samples with applied gating voltage at the metallic contacts. For such samples it has been found experimentally that both the longitudinal and Hall resistance as a function of the magnetic field can change significantly. Using the nonequilibrium network model we are able to reproduce most qualitative features of the experiments.Comment: 29 pages, 16 Figure

    Channel Flow of a Tensorial Shear-Thinning Maxwell Model: Lattice Boltzmann Simulations

    Full text link
    We introduce a nonlinear generalized tensorial Maxwell-type constitutive equation to describe shear-thinning glass-forming fluids, motivated by a recent microscopic approach to the nonlinear rheology of colloidal suspensions. The model captures a nonvanishing dynamical yield stress at the glass transition and incorporates normal-stress differences. A modified lattice-Boltzmann (LB) simulation scheme is presented that includes non-Newtonian contributions to the stress tensor and deals with flow-induced pressure differences. We test this scheme in pressure-driven 2D Poiseuille flow of the nonlinear generalized Maxwell fluid. In the steady state, comparison with an analytical solution shows good agreement. The transient dynamics after startup and cessation of the pressure gradient are studied; the simulation reproduces a finite stopping time for the cessation flow of the yield-stress fluid in agreement with previous analytical estimates
    • 

    corecore