3,466 research outputs found

    Experimental validation of boundary element methods for noise prediction

    Get PDF
    Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB

    Vibration in Planetary Gear Systems with Unequal Planet Stiffnesses

    Get PDF
    An algorithm suitable for a minicomputer was developed for finding the natural frequencies and mode shapes of a planetary gear system which has unequal stiffnesses between the Sun/planet and planet/ring gear meshes. Mode shapes are represented in the form of graphical computer output that illustrates the lateral and rotational motion of the three coaxial gears and the planet gears. This procedure permits the analysis of gear trains utilizing nonuniform mesh conditions and user specified masses, stiffnesses, and boundary conditions. Numerical integration of the equations of motion for planetary gear systems indicates that this algorithm offers an efficient means of predicting operating speeds which may result in high dynamic tooth loads

    Comparison of analysis and experiment for gearbox noise

    Get PDF
    Low contact ratio spur gears were tested in the NASA gear-noise rig to study the noise radiated from the top of the gearbox. Experimental results were compared with a NASA acoustics code to validate the code for predicting transmission noise. The analytical code is based on the boundary element method (BEM) which models the gearbox top as a plate in an infinite baffle. Narrow band vibration spectra measured at 63 nodes on the gearbox top were used to produce input data for the BEM model. The BEM code predicted the total sound power based on the measured vibration. The measured sound power was obtained from an acoustic intensity scan taken near the surface of the gearbox at the same 63 nodes used for vibration measurement. Analytical and experimental results were compared at four different speeds for sound power at each of the narrow band frequencies over the range of 400 to 3200 Hz. Results are also compared for the sound power level at meshing frequency plus three sideband pairs and at selected gearbox resonant frequencies. The difference between predicted and measure sound power is typically less than 3 dB with the predicted value generally less than the measured value

    Acoustical analysis of gear housing vibration

    Get PDF
    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described

    Modal simulation of gearbox vibration with experimental correlation

    Get PDF
    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment
    • 

    corecore