14 research outputs found
A survey of the European Reference Network EpiCARE on clinical practice for selected rare epilepsies
Objective: Clinical care of rare and complex epilepsies is challenging, because evidence‐based treatment guidelines are scarce, the experience of many physicians is limited, and interdisciplinary treatment of comorbidities is required. The pathomechanisms of rare epilepsies are, however, increasingly understood, which potentially fosters novel targeted therapies. The objectives of our survey were to obtain an overview of the clinical practice in European tertiary epilepsy centers treating patients with 5 arbitrarily selected rare epilepsies and to get an estimate of potentially available patients for future studies. /
Methods: Members of the European Reference Network for rare and complex epilepsies (EpiCARE) were invited to participate in a web‐based survey on clinical practice of patients with Dravet syndrome, tuberous sclerosis complex (TSC), autoimmune encephalitis, and progressive myoclonic epilepsies including Unverricht Lundborg and Unverricht‐like diseases. A consensus‐based questionnaire was generated for each disease. /
Results: Twenty‐six of 30 invited epilepsy centers participated. Cohorts were present in most responding centers for TSC (87%), Dravet syndrome (85%), and autoimmune encephalitis (71%). Patients with TSC and Dravet syndrome represented the largest cohorts in these centers. The antiseizure drug treatments were rather consistent across the centers especially with regard to Dravet syndrome, infantile spasms in TSC, and Unverricht Lundborg / Unverricht‐like disease. Available, widely used targeted therapies included everolimus in TSC and immunosuppressive therapies in autoimmune encephalitis. Screening for comorbidities was routinely done, but specific treatment protocols were lacking in most centers. /
Significance: The survey summarizes the current clinical practice for selected rare epilepsies in tertiary European epilepsy centers and demonstrates consistency as well as heterogeneity in the treatment, underscoring the need for controlled trials and recommendations. The survey also provides estimates for potential participants of clinical trials recruited via EpiCARE, emphasizing the great potential of Reference Networks for future studies to evaluate new targeted therapies and to identify novel biomarkers
A survey of the European Reference Network EpiCARE on clinical practice for selected rare epilepsies
Objective: Clinical care of rare and complex epilepsies is challenging, because evidence-based treatment guidelines are scarce, the experience of many physicians is limited, and interdisciplinary treatment of comorbidities is required. The pathomechanisms of rare epilepsies are, however, increasingly understood, which potentially fosters novel targeted therapies. The objectives of our survey were to obtain an overview of the clinical practice in European tertiary epilepsy centers treating patients with 5 arbitrarily selected rare epilepsies and to get an estimate of potentially available patients for future studies. Methods: Members of the European Reference Network for rare and complex epilepsies (EpiCARE) were invited to participate in a web-based survey on clinical practice of patients with Dravet syndrome, tuberous sclerosis complex (TSC), autoimmune encephalitis, and progressive myoclonic epilepsies including Unverricht Lundborg and Unverricht-like diseases. A consensus-based questionnaire was generated for each disease. Results: Twenty-six of 30 invited epilepsy centers participated. Cohorts were present in most responding centers for TSC (87%), Dravet syndrome (85%), and autoimmune encephalitis (71%). Patients with TSC and Dravet syndrome represented the largest cohorts in these centers. The antiseizure drug treatments were rather consistent across the centers especially with regard to Dravet syndrome, infantile spasms in TSC, and Unverricht Lundborg / Unverricht-like disease. Available, widely used targeted therapies included everolimus in TSC and immunosuppressive therapies in autoimmune encephalitis. Screening for comorbidities was routinely done, but specific treatment protocols were lacking in most centers. Significance: The survey summarizes the current clinical practice for selected rare epilepsies in tertiary European epilepsy centers and demonstrates consistency as well as heterogeneity in the treatment, underscoring the need for controlled trials and recommendations. The survey also provides estimates for potential participants of clinical trials recruited via EpiCARE, emphasizing the great potential of Reference Networks for future studies to evaluate new targeted therapies and to identify novel biomarkers
Trends in pediatric epilepsy surgery in Europe between 2008 and 2015: Country‐, center‐, and age‐specific variation
OBJECTIVE: To profile European trends in pediatric epilepsy surgery (<16 years of age) between 2008 and 2015. METHODS: We collected information on volumes and types of surgery, pathology, and seizure outcome from 20 recognized epilepsy surgery reference centers in 10 European countries. RESULTS: We analyzed retrospective aggregate data on 1859 operations. The proportion of surgeries significantly increased over time (P < .0001). Engel class I outcome was achieved in 69.3% of children, with no significant improvement between 2008 and 2015. The proportion of histopathological findings consistent with glial scars significantly increased between the ages of 7 and 16 years (P for trend = .0033), whereas that of the remaining pathologies did not vary across ages. A significant increase in unilobar extratemporal surgeries (P for trend = .0047) and a significant decrease in unilobar temporal surgeries (P for trend = .0030) were observed between 2008 and 2015. Conversely, the proportion of multilobar surgeries and unrevealing magnetic resonance imaging cases remained unchanged. Invasive investigations significantly increased, especially stereo‐electroencephalography. We found different trends comparing centers starting their activity in the 1990s to those whose programs were developed in the past decade. Multivariate analysis revealed a significant variability of the proportion of the different pathologies and surgical approaches across countries, centers, and age groups between 2008 and 2015. SIGNIFICANCE: Between 2008 and 2015, we observed a significant increase in the volume of pediatric epilepsy surgeries, stability in the proportion of Engel class I outcomes, and a modest increment in complexity of the procedures
Malformations of cortical development: New surgical advances
International audienceEpilepsy related to malformations of cortical development is frequently drug resistant or requires heavy medication, therefore surgery is key in their management. The role of stereotactic surgery has recently changed the diagnosis and treatment of focal cortical dysplasias (FCD), hypothalamic hamartomas (HH) and periventricular nodular heterotopias (PNH). In HH, radiosurgery using Gammaknife® leads to 60 % of seizure control and is associated with excellent neuropsychological results without significant endocrine function impairment. The seizure control rate is even higher (more than 80 %) with monopolar multiple stereotactic thermocoagulations and Laser interstitial Thermal Therapy (LiTT). While the first technique is associated with a 2 % complications rate (but with excellent neuropsychological outcomes), the latest has up to 22 % side effects in some series. All three of these techniques have encouraging results, but controlled studies are still lacking to provide evidence-based new therapeutic algorithms. With regard to the PNH, surgical management has long been limited by the depth of the lesions and their close anatomical relations with the functional brain connectome. Stereotactic approaches required to perform a SEEG, to locate the part of the PNH responsible for the seizure onset, are later followed by a stereotactic lesioning procedure, therefore doubling the bleeding risk. That is why SEEG-guided radiofrequency-thermocoagulation (SEEG guided-RF-TC), which makes it possible to perform these two steps in a single procedure, was considered as a promising option. A recent meta-analysis confirmed this intuition and reported 38 % of seizure-free patients and 81 % of responders with only 0.3 % of complications, making this approach the first treatment line, followed by LiTT. Among the multiple advances in the FCD identification by non-invasive investigations, a new modality of per-operative diagnostic procedure, the three-dimensional electrocorticography may lead to simplify the preoperative investigation and enhance the accuracy of FCD delineation. Evidence is nevertheless still insufficient to validate this promising concept. Conventional surgical resection has also been concerned by significant conceptual advances during the past few years, in particular with the development of the hodotopic approach, initially in oncologic surgery. Associated with a better understanding of neuroplasticity in epilepsy and the setting up of functional mapping during SEEG or during awake surgery, the possibility of surgical resections grew up. A short-term perspective in this field, when surgical resection remains impossible, would be to target crucial nodes of the epileptic network, distinct from the core functional connectome
Stereotactic Electroencephalography Is a Safe Procedure, Including for Insular Implantations.
In some cases of drug-resistant focal epilepsy, noninvasive presurgical investigation may be insufficient to identify the ictal onset zone and the eloquent cortical areas. In such situations, invasive investigations are proposed using either stereotactic electroencephalography (SEEG) or subdural grid electrodes. Meta-analysis suggests that SEEG is safer than subdural grid electrodes, but insular implantation of SEEG electrodes has been thought to carry an additional risk of intraparenchymal hemorrhagic complications. Our objectives were to determine whether an insular SEEG trajectory is a risk factor for intracranial hematoma and to report the global safety of the procedure and provide some guidelines to prevent and detect complications.
In a retrospective analysis of a surgical series of 525 consecutive procedures between 1995 and 2015, all electrodes were classified according to their insular or extrainsular trajectory. All complications were classified as major or minor according to their potential consequences regarding patient neurologic status.
Four intraparenchymal hematomas, all related to extrainsular electrodes (4/4974; 0.08%) were reported; no hematoma was found along insular electrodes (0/1042; 0%). There were 8 major complications (1.52%): 7 intracranial hematomas (1.33%) and 1 case of meningitis. Two patients had long-term neurologic impairment (0.38%), and 1 death (not directly related to the procedure) occurred (0.19%). Eleven minor complications (2.09%) were encountered, including broken electrode (1.52%), acute pneumocephalus (0.38%), and local cutaneous infection (0.19%).
SEEG is a safe procedure. Insular trajectories cannot be considered an additional risk of intracranial bleeding
SEEG-guided radiofrequency thermocoagulation (SEEG RF-TC): from in vitro and in vivo data to technical guidelines
International audienceBackgroundDeep brain electrodes have been used for the last ten years to produce bipolar SEEG-guided radiofrequency thermo-coagulation (SEEG RF-TC). However, this technique is based on empirical knowledge. The aim of this study is threefold: 1) provide in vivo animal data concerning the effect of bipolar RF-TC on brain and its safety 2) assess the parameters of this procedure (current delivery and dipole selection) which produce the most efficient lesion and 3) provide technical guidelines.MethodsFirst we achieved in vivo RF-TC on rabbit brain with several conditions (power delivered and lesioning duration) and analyzed their influence on the lesion produced. Only a difference in terms of volume was found and type of histological lesions was similar whatever the settings were. We then performed multiple RF-TC in vitro on egg albumen first with several parameters of radiofrequency then with different dipole spatial selections. The endpoint was the size of the radiofrequency thermo-lesion produced.ResultsUsing unfixed parameters of radiofrequency current delivery and increasing it until the power delivered by the generator collapsed produced significantly larger lesions (p = 0.008) than other conditions. Concerning the dipole selection, the use of contiguous contacts on electrodes lead to lesions with a higher volume (p = 7.7 x 10-13) than those produced with noncontiguous ones.ConclusionBeside the target selection in SEEG RF-TC, which are summarized based on a literature review, we report the optimal parameters: radiofrequency-current must be increased until the power delivered collapses and dipoles should be constituted by contiguous electrode contacts
Behavioral and fMRI responses to fearful faces are altered in benign childhood epilepsy with centrotemporal spikes (BCECTS).
We hypothesized that children with benign childhood epilepsy with centrotemporal spikes (BCECTS) might have altered social cognitive skills and underlying neural networks.
We studied 13 patients with BCECTS and 11 age-matched controls using event-related functional magnetic resonance imaging (fMRI) with an emotional discrimination task consisting of viewing happy, fearful, scrambled, and neutral faces. Behavioral performance measured during the task was correlated with clinical variables and behavioral ratings.
In comparison with age-matched controls, children with BCECTS performing a fearful faces detection task showed significantly reduced bilateral fMRI activation in the insular cortex, caudate, and lentiform nuclei, as well as increased response time. The percentage of errors made by children with BCECTS correlated negatively with age, a finding not observed in controls. In patients, accuracy positively correlated with time since the last seizure. The above abnormalities were not observed during happy faces detection task, except for a slower response in children with BCECTS as compared to controls.
Our study suggests that BCECTS is associated with altered social cognition network and function, particularly for the identification of fearful faces. The age dependency of some of these findings supports the view that a delayed maturation of spiking cortical regions might underlie the cognitive dysfunction observed in BCECTS
Resective surgery in tuberous Sclerosis complex, from Penfield to 2018: A critical review.
Medically treated patients suffering from tuberous sclerosis complex (TSC) have less than 30% chance of achieving a sustained remission. Both the international TSC consensus conference in 2012, and the panel of European experts in 2012 and 2018 have concluded that surgery should be considered for medically refractory TSC patients. However, surgery remains currently underutilized in TSC. Case series, meta-analyses and guidelines all agree that a 50 to 60% chance of long-term seizure freedom can be achieved after surgery in TSC patients and a presurgical work-up should be done as early as possible after failure of two appropriate AEDs. The presence of infantile spasms, the second most common seizure type in TSC, had initially been a barrier to surgical planning but is now no longer considered a contraindication for surgery in TSC patients. TSC patients undergoing presurgical evaluation range from those with few tubers and good anatomo-electro-clinical correlations to patients with a significant "tuber burden" in whom the limits of the epileptogenic zone is much more difficult to define. Direct surgery is often possible in patients with a good electro-clinical and MRI correlation. For more complex cases, invasive monitoring is often mandatory and bilateral investigations can be necessary. Multiple non-invasive tools have been shown to be helpful in determining the placement of these invasive electrodes and in planning the resection scheme. Additionally, at an individual level, multimodality imaging can assist in identifying the epileptogenic zone. Increased availability of investigations that can be performed without sedation in young and/or cognitively impaired children such as MEG and HR EEG would most probably be of great benefit in the TSC population. Of those selected for invasive EEG, rates of seizure freedom following surgery are close to cases where invasive monitoring is not required, strengthening the important and efficient role of intracranial investigations in drug-resistant TSC associated epilepsy
Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes.
Previous functional magnetic resonance imaging (fMRI) studies have identified brain systems underlying different components of working memory (WM) in healthy subjects. The aim of this study was to compare the functional integrity of these neural networks in children with self-limited childhood epilepsy with centro-temporal spikes (ECTS) as compared to healthy controls, using a verbal working memory task (WMT).
Functional MRI of WM in seventeen 6-to-13 year-old children, diagnosed with ECTS, and 17 sex- and age-matched healthy controls were conducted at 3 T. To estimate BOLD responses during the maintenance of low, medium, and high WMT loads, we used a Sternberg verbal WMT. Neuropsychological testing prior to scanning and behavioral data during scanning were also acquired.
Behavioral performances during WMT, in particular accuracy and response time, were poorer in children with ECTS than in controls. Increased WM load was associated with increased BOLD signal in all subjects, with significant clusters detected in frontal and parietal regions, predominantly in the left hemisphere. However, under the high load condition, patients showed reduced activation in the frontal, temporal and parietal regions as compared to controls. In brain regions where WM-triggered BOLD activation differed between groups, this activation correlated with neuropsychological performances in healthy controls but not in patients with ECTS, further suggesting WM network dysfunction in the latter.
Children with ECTS differ from healthy controls in how they control WM processes during tasks with increasing difficulty level, notably for high WM load where patients demonstrate both reduced BOLD activation and behavioral performances