23 research outputs found

    Children and adolescents with pulmonary arterial hypertension : baseline and follow-up data from the polish registry of pulmonary hypertension (BNP-PL)

    Get PDF
    We present the results from the pediatric arm of the Polish Registry of Pulmonary Hypertension. We prospectively enrolled all pulmonary arterial hypertension (PAH) patients, between the ages of 3 months and 18 years, who had been under the care of each PAH center in Poland between 1 March 2018 and 30 September 2018. The mean prevalence of PAH was 11.6 per million, and the estimated incidence rate was 2.4 per million/year, but it was geographically heterogeneous. Among 80 enrolled children (females, n = 40; 50%), 54 (67.5%) had PAH associated with congenital heart disease (CHD-PAH), 25 (31.25%) had idiopathic PAH (IPAH), and 1 (1.25%) had portopulmonary PAH. At the time of enrolment, 31% of the patients had significant impairment of physical capacity (WHO-FC III). The most frequent comorbidities included shortage of growth (n = 20; 25%), mental retardation (n = 32; 40%), hypothyroidism (n = 19; 23.8%) and Down syndrome (n = 24; 30%). The majority of children were treated with PAH-specific medications, but only half of them with double combination therapy, which improved after changing the reimbursement policy. The underrepresentation of PAH classes other than IPAH and CHD-PAH, and the geographically heterogeneous distribution of PAH prevalence, indicate the need for building awareness of PAH among pediatricians, while a frequent coexistence of PAH with other comorbidities calls for a multidisciplinary approach to the management of PAH children

    Cellular Location of HNF4α is Linked With Terminal Liver Failure in Humans

    Get PDF
    Hepatocyte nuclear factor 4 alpha (HNF4α) is a transcription factor that plays a critical role in hepatocyte function, and HNF4α-based reprogramming corrects terminal liver failure in rats with chronic liver disease. In the livers of patients with advanced cirrhosis, HNF4α RNA expression levels decrease as hepatic function deteriorates, and protein expression is found in the cytoplasm. These findings could explain impaired hepatic function in patients with degenerative liver disease. In this study, we analyzed HNF4α localization and the pathways involved in post-translational modification of HNF4α in human hepatocytes from patients with decompensated liver function. RNA-sequencing analysis revealed that AKT-related pathways, specifically phospho-AKT, is down-regulated in cirrhotic hepatocytes from patients with terminal failure, in whom nuclear levels of HNF4α were significantly reduced, and cytoplasmic expression of HNF4α was increased. cMET was also significantly reduced in failing hepatocytes. Moreover, metabolic profiling showed a glycolytic phenotype in failing human hepatocytes. The contribution of cMET and phospho-AKT to nuclear localization of HNF4α was confirmed using Spearman's rank correlation test and pathway analysis, and further correlated with hepatic dysfunction by principal component analysis. HNF4α acetylation, a posttranslational modification important for nuclear retention, was also significantly reduced in failing human hepatocytes when compared with normal controls. Conclusion: These results suggest that the alterations in the cMET-AKT pathway directly correlate with HNF4α localization and level of hepatocyte dysfunction. This study suggests that manipulation of HNF4α and pathways involved in HNF4α posttranslational modification may restore hepatocyte function in patients with terminal liver failure.Fil: Florentino, Rodrigo M.. Univeristy of Pittsburgh. School of Medicine; Estados Unidos. Universidade Federal de Minas Gerais; BrasilFil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Morita, Kazutoyo. University of Pittsburgh at Johnstown; Estados UnidosFil: Takeishi, Kazuki. University of Pittsburgh at Johnstown; Estados UnidosFil: Ostrowska, Alina. University of Pittsburgh at Johnstown; Estados UnidosFil: Achreja, Abhinav. Michigan State University; Estados UnidosFil: Animasahun, Olamide. Michigan State University; Estados UnidosFil: Haep, Nils. University of Pittsburgh at Johnstown; Estados UnidosFil: Arazov, Shohrat. University of Pittsburgh at Johnstown; Estados UnidosFil: Agarwal, Nandini. University of Pittsburgh at Johnstown; Estados UnidosFil: Collin de lHortet, Alexandra. University of Pittsburgh at Johnstown; Estados UnidosFil: Guzman Lepe, Jorge. University of Pittsburgh at Johnstown; Estados UnidosFil: Tafaleng, Edgar N.. University of Pittsburgh at Johnstown; Estados UnidosFil: Mukherjee, Amitava. University of Pittsburgh at Johnstown; Estados UnidosFil: Troy, Kris. University of Pittsburgh at Johnstown; Estados UnidosFil: Banerjee, Swati. University of Pittsburgh at Johnstown; Estados UnidosFil: Paranjpe, Shirish. University of Pittsburgh at Johnstown; Estados UnidosFil: Michalopoulos, George K.. University of Pittsburgh at Johnstown; Estados UnidosFil: Bell, Aaron. University of Pittsburgh at Johnstown; Estados UnidosFil: Nagrath, Deepak. Michigan State University; Estados UnidosFil: Hainer, Sarah J.. University of Pittsburgh at Johnstown; Estados UnidosFil: Fox, Ira J.. University of Pittsburgh at Johnstown; Estados UnidosFil: Soto Gutierrez, Alejandro. University of Pittsburgh at Johnstown; Estados Unido

    DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift

    Get PDF
    Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift

    Metabolic syndrome — a new definition and management guidelines

    Get PDF
    The joint position paper by Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons Reviewers: Agnieszka Olszanecka, Krzysztof J. Filipia

    Metabolic fate of pregnene-based steroids in the lactonization pathway of multifunctional strain Penicillium lanosocoeruleum

    No full text
    Abstract Background Metabolic activities of microorganisms to modify the chemical structures of organic compounds became an effective tool for the production of high-valued steroidal drugs or their precursors. Currently research efforts in production of steroids of pharmaceutical interest are focused on either optimization of existing processes or identification of novel potentially useful bioconversions. Previous studies demonstrated that P. lanosocoeruleum KCH 3012 metabolizes androstanes to the corresponding lactones with high yield. In order to explore more thoroughly the factors determining steroid metabolism by this organism, the current study was initiated to delineate the specificity of this fungus with respect to the cleavage of steroid side chain of progesterone and pregnenolone The effect of substituents at C-16 in 16-dehydropregnenolone, 16α,17α-epoxy-pregnenolone and 16α-methoxy-pregnenolone on the pattern of metabolic processing of these steroids was also investigated. Results and discussion All of the analogues tested (except the last of the listed) in multi-step transformations underwent the Baeyer–Villiger oxidation to their δ-d-lactones. The activity of 3β-HSD was a factor affecting the composition of the product mixtures. 16α,17α-epoxy-pregnenolone underwent a rare epoxide opening with retention stereochemistry to give four 16α-hydroxy-lactones. Apart from oxidative transformations, a reductive pathway was revealed with the unique hydrogenation of 5-ene double bond leading to the formation of 3β,16α-dihydroxy-17a-oxa-d-homo-5α-androstan-17-one. 16α-Methoxy-pregnenolone was transformed to the 20(R)-alcohol with no further conversion. Conclusions This work clearly demonstrated that P. lanosocoeruleum KCH 3012 has great multi-functional catalytic properties towards the pregnane-type steroids. Studies have highlighted that a slight modification of the d-ring of substrates may control metabolic fate either into the lactonization or reductive and oxidative pathways. Possibility of epoxide opening by enzymes from this microorganism affords a unique opportunity for generation of novel bioactive steroids

    Senescence-Associated Metabolomic Phenotype in Primary and iPSC-Derived Mesenchymal Stromal Cells

    No full text
    Long-term culture of primary cells is characterized by functional and secretory changes, which ultimately result in replicative senescence. It is largely unclear how the metabolome of cells changes during replicative senescence and if such changes are consistent across different cell types. We have directly compared culture expansion of primary mesenchymal stromal cells (MSCs) and induced pluripotent stem cell-derived MSCs (iMSCs) until they reached growth arrest. Both cell types acquired similar changes in morphology, in vitro differentiation potential, senescence-associated beta-galactosidase, and DNA methylation. Furthermore, MSCs and iMSCs revealed overlapping gene expression changes, particularly in functional categories related to metabolic processes. We subsequently compared the metabolomes of MSCs and iMSCs and observed overlapping senescence-associated changes in both cell types, including downregulation of nicotinamide ribonucleotide and upregulation of orotic acid. Taken together, replicative senescence is associated with a highly reproducible senescence-associated metabolomics phenotype, which may be used to monitor the state of cellular aging

    Human Hepatocellular response in Cholestatic Liver Diseases

    No full text
    ABSTRACTPrimary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), the most common types of cholestatic liver disease (CLD), result in enterohepatic obstruction, bile acid accumulation, and hepatotoxicity. The mechanisms by which hepatocytes respond to and cope with CLD remain largely unexplored. This study includes the characterization of hepatocytes isolated from explanted livers of patients with PBC and PSC. We examined the expression of hepatocyte-specific genes, intracellular bile acid (BA) levels, and oxidative stress in primary-human-hepatocytes (PHHs) isolated from explanted livers of patients with PBC and PSC and compared them with control normal human hepatocytes. Our findings provide valuable initial insights into the hepatocellular response to cholestasis in CLD and help support the use of PHHs as an experimental tool for these diseases
    corecore