133 research outputs found

    Transcriptional Responses of Resistant and Susceptible Fish Clones to the Bacterial Pathogen Flavobacterium psychrophilum

    Get PDF
    Flavobacterium psychrophilum is a bacterial species that represents one of the most important pathogens for aquaculture worldwide, especially for salmonids. To gain insights into the genetic basis of the natural resistance to F. psychrophilum, we selected homozygous clones of rainbow trout with contrasted susceptibility to the infection. We compared the transcriptional response to the bacteria in the pronephros of a susceptible and a resistant line by micro-array analysis five days after infection. While the basal transcriptome of healthy fish was significantly different in the resistant and susceptible lines, the transcriptome modifications induced by the bacteria involved essentially the same genes and pathways. The response to F. psychrophilum involved antimicrobial peptides, complement, and a number of enzymes and chemokines. The matrix metalloproteases mmp9 and mmp13 were among the most highly induced genes in both genetic backgrounds. Key genes of both pro- and anti-inflammatory response such as IL1 and IL10, were up-regulated with a greater magnitude in susceptible animals where the bacterial load was also much higher. While higher resistance to F. psychrophilum does not seem to be based on extensive differences in the orientation of the immune response, several genes including complement C3 showed stronger induction in the resistant fish. They may be important for the variation of susceptibility to the infection

    The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria

    Get PDF
    Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria

    Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation

    Get PDF
    IntroductionMajor clinically relevant inflammatory events such as septic shock and severe COVID-19 trigger dynamic changes in the host immune system, presenting promising candidates for new biomarkers to improve precision diagnostics and patient stratification. Hepcidin, a master regulator of iron metabolism, has been intensively studied in many pathologies associated with immune system activation, however these data have never been compared to other clinical settings. Thus, we aimed to reveal the dynamics of iron regulation in various clinical settings and to determine the suitability of hepcidin and/or ferritin levels as biomarkers of inflammatory disease severity.CohortsTo investigate the overall predictive ability of hepcidin and ferritin, we enrolled the patients suffering with three different diagnoses – in detail 40 patients with COVID-19, 29 patients in septic shock and eight orthopedic patients who were compared to nine healthy donors and all cohorts to each other.ResultsWe showed that increased hepcidin levels reflect overall immune cell activation driven by intrinsic stimuli, without requiring direct involvement of infection vectors. Contrary to hepcidin, ferritin levels were more strongly boosted by pathogen-induced inflammation – in septic shock more than four-fold and in COVID-19 six-fold in comparison to sterile inflammation. We also defined the predictive capacity of hepcidin-to-ferritin ratio with AUC=0.79 and P = 0.03.DiscussionOur findings confirm that hepcidin is a potent marker of septic shock and other acute inflammation-associated pathologies and demonstrate the utility of the hepcidin-to-ferritin ratio as a predictor of mortality in septic shock, but not in COVID-19

    Indochina 1910

    No full text
    Relief shown by shading. Includes inset location map and population and ethnicity diagrams. "Indo-Chine Francaise" -- right margin. "Cartes extraites de l'Atlas de Chabert-L. Gallois, atlas Général de l'Indochine Francaise. Un superbe volume relié toile grain soie et contenant 169 cartes ou plans." "Loaned by the American Geographical Society to the Peace Conference at Versailles, 1918-1919" stamped in blue in top margin.Color1:2,200,00

    An Adaptive Quasi Monte Carlo Alternative to Metropolis

    No full text
    We present a manually-adaptive extension of Quasi Monte Carlo (QMC) integration for approximating marginal densities, moments, and quantiles when the joint density is known up to a normalization constant. Randomization and a batch-wise approach involving (0; s)-sequences are the cornerstones of the technique. By incorporating a variety of graphical diagnostics the method allows the user to adaptively allocate points for joint density function evaluations. Through intelligent allocation of resources to different regions of the marginal space, the method can quickly produce reliable marginal density approximations in moderate dimensions. We demonstrate by examples that adaptive QMC can be a viable alternative to the Metropolis algorithm. 1 Introduction A common computational problem in statistics is the calculation of marginal densities as well as percentiles and moments of a particular marginal distribution. In many situations the joint density is too complicated for these quantities t..
    corecore