196 research outputs found
Auger recombination and carrier multiplication in embedded silicon and germanium nanocrystals
For Si and Ge nanocrystals (NCs) embedded in wide band-gap matrices, Auger
recombination (AR) and carrier multiplication (CM) lifetimes are computed
exactly in a three-dimensional real space grid using empirical pseudopotential
wave functions. Our results in support of recent experimental data offer new
predictions. We extract simple Auger constants valid for NCs. We show that both
Si and Ge NCs can benefit from photovoltaic efficiency improvement via CM due
to the fact that under an optical excitation exceeding twice the band gap
energy, the electrons gain lion's share from the total excess energy and can
cause a CM. We predict that CM becomes especially efficient for hot electrons
with an excess energy of about 1 eV above the CM threshold.Comment: 4 pages, 6 figures (Published version
Gap opening in ultrathin Si layers: Role of confined and interface states
We present first principle calculations of ultrathin silicon (111) layers embedded in CaF2, a lattice matched insulator. Our all electron calculation allows a check of the quantum confinement hypothesis for the Si band gap opening as a function of thickness. We find that the gap opening is mostly due to the valence band while the lowest conduction band states shift very modestly due to their pronounced interface character. The latter states are very sensitive to the sample design. We suggest that a quasidirect band gap can be achieved by stacking Si layers of different thickness
Multiple exciton generation in isolated and interacting silicon nanocrystals
An important challenge in the field of renewable energy is the development of novel nanostructured solar cell devices which implement low-dimensional materials to overcome the limits of traditional photovoltaic systems. For optimal energy conversion in photovoltaic devices, one important requirement is that the full energy of the solar spectrum is effectively used. In this context, the possibility of exploiting features and functionalities induced by the reduced dimensionality of the nanocrystalline phase, in particular by the quantum confinement of the electronic density, can lead to a better use of the carrier excess energy and thus to an increment of the thermodynamic conversion efficiency of the system. Carrier multiplication, i.e. the generation of multiple electron-hole pairs after absorption of one single high-energy photon (with energy at least twice the energy gap of the system), can be exploited to maximize cell performance, promoting a net reduction of loss mechanisms. Over the past fifteen years, carrier multiplication has been recorded in a large variety of semiconductor nanocrystals and other nanostructures. Owing to the role of silicon in solar cell applications, the mission of this review is to summarize the progress in this fascinating research field considering carrier multiplication in Si-based low-dimensional systems, in particular Si nanocrystals, both from the experimental and theoretical point of view, with special attention given to the results obtained by ab initio calculations
Engineering Silicon Nanocrystals: Theoretical study of the effect of Codoping with Boron and Phosphorus
We show that the optical and electronic properties of nanocrystalline silicon
can be efficiently tuned using impurity doping. In particular, we give
evidence, by means of ab-initio calculations, that by properly controlling the
doping with either one or two atomic species, a significant modification of
both the absorption and the emission of light can be achieved. We have
considered impurities, either boron or phosphorous (doping) or both (codoping),
located at different substitutional sites of silicon nanocrystals with size
ranging from 1.1 nm to 1.8 nm in diameter. We have found that the codoped
nanocrystals have the lowest impurity formation energies when the two
impurities occupy nearest neighbor sites near the surface. In addition, such
systems present band-edge states localized on the impurities giving rise to a
red-shift of the absorption thresholds with respect to that of undoped
nanocrystals. Our detailed theoretical analysis shows that the creation of an
electron-hole pair due to light absorption determines a geometry distortion
that in turn results in a Stokes shift between adsorption and emission spectra.
In order to give a deeper insight in this effect, in one case we have
calculated the absorption and emission spectra going beyond the single-particle
approach showing the important role played by many-body effects. The entire set
of results we have collected in this work give a strong indication that with
the doping it is possible to tune the optical properties of silicon
nanocrystals.Comment: 14 pages 19 figure
Interband, intraband and excited-state direct photon absorption of silicon and germanium nanocrystals embedded in a wide band-gap lattice
Embedded Si and Ge nanocrystals (NCs) in wide band-gap matrices are studied
theoretically using an atomistic pseudopotential approach. From small clusters
to large NCs containing on the order of several thousand atoms are considered.
Effective band-gap values as a function of NC diameter reproduce very well the
available experimental and theoretical data. It is observed that the highest
occupied molecular orbital for both Si and Ge NCs and the lowest unoccupied
molecular orbital for Si NCs display oscillations with respect to size among
the different irreducible representations of the point group to which
these spherical NCs belong. Based on this electronic structure, first the
interband absorption is thoroughly studied which shows the importance of
surface polarization effects that significantly reduce the absorption when
included. This reduction is found to increase with decreasing NC size or with
increasing permittivity mismatch between the NC core and the host matrix.
Reasonable agreement is observed with the experimental absorption spectra where
available. The deformation of spherical NCs into prolate or oblate ellipsoids
are seen to introduce no pronounced effects for the absorption spectra. Next,
intraconduction and intravalence band absorption coefficients are obtained in
the wavelength range from far-infrared to visible region. These results can be
valuable for the infrared photodetection prospects of these NC arrays. Finally,
excited-state absorption at three different optical pump wavelengths, 532 nm,
355 nm and 266 nm are studied for 3- and 4 nm-diameter NCs. This reveals strong
absorption windows in the case of holes and a broad spectrum in the case of
electrons which can especially be relevant for the discussions on achieving
gain in these structures.Comment: Published version, 13 pages, 15 figures, local field effects include
Electronic and Optical Properties of Silicon Nanocrystals
[No abstract available
Electrical conduction of silicon oxide containing silicon quantum dots
Current-voltage measurements have been made at room temperature on a Si-rich
silicon oxide film deposited via Electron-Cyclotron Resonance Plasma Enhanced
Chemical Vapor Deposition (ECR-PECVD) and annealed at 750 - 1000C. The
thickness of oxide between Si quantum dots embedded in the film increases with
the increase of annealing temperature. This leads to the decrease of current
density as the annealing temperature is increased. Assuming the Fowler-Nordheim
tunneling mechanism in large electric fields, we obtain an effective barrier
height of 0.7 0.1 eV for an electron tunnelling
through an oxide layer between Si quantum dots. The Frenkel-Poole effect can
also be used to adequately explain the electrical conduction of the film under
the influence of large electric fields. We suggest that at room temperature Si
quantum dots can be regarded as traps that capture and emit electrons by means
of tunneling.Comment: 14 pages, 5 figures, submitted to J. Phys. Conden. Mat
Screening in semiconductor nanocrystals: \textit{Ab initio} results and Thomas-Fermi theory
A first-principles calculation of the impurity screening in Si and Ge
nanocrystals is presented. We show that isocoric screening gives results in
agreement with both the linear response and the point-charge approximations.
Based on the present ab initio results, and by comparison with previous
calculations, we propose a physical real-space interpretation of the several
contributions to the screening. Combining the Thomas-Fermi theory and simple
electrostatics, we show that it is possible to construct a model screening
function that has the merit of being of simple physical interpretation. The
main point upon which the model is based is that, up to distances of the order
of a bond length from the perturbation, the charge response does not depend on
the nanocrystal size. We show in a very clear way that the link between the
screening at the nanoscale and in the bulk is given by the surface
polarization. A detailed discussion is devoted to the importance of local field
effects in the screening. Our first-principles calculations and the
Thomas-Fermi theory clearly show that in Si and Ge nanocrystals, local field
effects are dominated by surface polarization, which causes a reduction of the
screening in going from the bulk down to the nanoscale. Finally, the model
screening function is compared with recent state-of-the-art ab initio
calculations and tested with impurity activation energies
- …