46 research outputs found

    Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract

    Get PDF
    Background: The ability of a bacterial strain to competitively exclude or displace other strains can be attributed to the production of narrow spectrum antimicrobials, the bacteriocins. In an attempt to evaluate the importance of bacteriocin production for Escherichia coli strain residence in the gastrointestinal tract, a murine model experimental evolution study was undertaken. Results: Six colicin-producing, yet otherwise isogenic, E. coli strains were administered and established in the large intestine of streptomycin-treated mice. The strains\u27 persistence, population density, and doubling time were monitored over a period of 112 days. Early in the experiment only minor differences in population density between the various colicin-producing and the nonproducing control strains were detected. However, over time, the density of the control strains plummeted, while that of the colicin-producing strains remained significantly higher (F(7,66) = 2.317; P \u3c 0.0008). Conclusion: The data presented here support prior claims that bacteriocin production may play a significant role in the colonization of E. coli in the gastrointestinal tract. Further, this study suggests that the ability to produce bacteriocins may prove to be a critical factor in determining the success of establishing probiotic E. coli in the gastrointestinal tract of humans and animals

    The Role of SOS Boxes in Enteric Bacteriocin Regulation

    Get PDF
    Bacteriocins are a large and functionally diverse family of toxins found in all major lineages of Bacteria. Colicins, those bacteriocins produced by Escherichia coli, serve as a model system for investigations of bacteriocin structure-function relationships, genetic organization, and their ecological role and evolutionary history. Colicin expression is often dependent on host regulatory pathways (such as the SOS system), is usually confined to times of stress, and results in death of the producing cells. This study investigates the role of the SOS system in mediating this unique form of toxin expression. A comparison of all the sequenced enteric bacteriocin promoters reveals that over 75 % are regulated by dual, overlapping SOS boxes, which serve to bind two LexA repressor proteins. Furthermore, a highly conserved poly-A motif is present in both of the binding sites examined, indicating enhanced affinity of the LexA protein for the binding site. The use of gene expression analysis and deletion mutations further demonstrates that these unique LexA cooperative binding regions result in a fine tuning of bacteriocin production, limiting it to times of stress. These results suggest that the evolution of dual SOS boxes elegantly accomplishes the task of increasing the amount of toxin produced by a cell while decreasing the rate of uninduced production, effectively reducing the cost of colicin production. This hypothesis may explain why such a promoter motif is present at such high frequencies in natural populations of bacteriocin-producing enteric bacteria. Ā© 2008 SGM

    Rapid MPN-Qpcr Screening for Pathogens in Air, Soil, Water, and Agricultural Produce

    Get PDF
    A sensitive, high-throughput, and cost-effective method for screening bacterial pathogens in the environment was developed. A variety of environmental samples, including aerosols, soil of various types (sand, sand/clay mix, and clay), wastewater, and vegetable surface (modeled by tomato), were concomitantly spiked with Salmonella enterica and/or Pseudomonas aeruginosa to determine recovery rates and limits of detection. The various matrices were first enriched with a general pre-enrichment broth in a dilution series and then enumerated by most probable number (MPN) estimation using quantitative PCR for rapid screening of amplicon presence. Soil and aerosols were then tested in non-spiked environmental samples, as these matrices are prone to large experimental variation. Limit of detection in the various soil types was 1ā€“3 colony-forming units (CFU) g[superscript āˆ’1]; on vegetable surface, 5 CFU per tomato; in treated wastewater, 5 CFU L[superscript āˆ’1]; and in aerosols, >300 CFU mL[superscript āˆ’1]. Our method accurately identified S. enterica in non-spiked environmental soil samples within a day, while traditional methods took 4 to 5 days and required sorting through biochemically and morphologically similar species. Likewise, our method successfully identified P. aeruginosa in non-spiked aerosols generated by a domestic wastewater treatment system. The obtained results suggest that the developed method presents a broad approach for the rapid, efficient, and reliable detection of relatively low densities of pathogenic organisms in challenging environmental samples.United States-Israel Binational Agricultural Research and Development Fund (Grant No. CP-9033-09)MIT International Science and Technology InitiativesKraft Foods Compan

    Effect of Phosphorus Amendments on Present Day Plankton Communities in Pelagic Lake Erie

    Get PDF
    To address questions regarding the potential impact of elevated total phosphorus (TP) inputs (due to relaxed regulations of TP loading), a series of TP enrichment experiments were conducted at pelagic stations in the 3 hydrologically distinct basins of Lake Erie. Results of nutrient assimilation measurements and assays for nutrient bioavailability suggest that the chemical speciation, and not concentration, of nitrogenous compounds may influence phytoplankton community structure; this in turn may lead to the selective proliferation of cyanobacteria in the eastern basin of the lake. Assays with cyanobacterial bioluminescent reporter systems for P and N availability as well as N-tot:P-tot assimilation ratios from on-deck incubation experiments support this work. Considered in the context of a microbial food web relative to a grazing food web, the results imply that alterations in current TP loading controls may lead to alterations in the phytoplankton community structure in the different basins of the Lake Erie system

    Evaluating amplified rDNA restriction analysis assay for identification of bacterial communities

    Get PDF
    Amplified ribosomal DNA restriction analysis (ARDRA) and restriction fragment length polymorphism were originally used for strain typing and for screening clone libraries to identify phylogenetic clusters within a microbial community. Here we used ARDRA as a model to examine the capacity of restriction-based techniques for clone identification, and the possibility of deriving phylogenetic information from ARDRA-based dendrograms. ARDRA was performed in silico on 48,759 sequences from the Ribosomal Database Project, and it was found that the fragmentation profiles were not necessarily unique for each sequence in the database, resulting in different species sharing fragmentation profiles. Although ARDRA-based clusters separated clones into different genera, these phylogenetic clusters did not overlap with trees constructed according to sequence alignment, calling into question the intra-genus ARDRA-based phylogeny. It is thus suggested that the prediction power of ARDRA clusters in identifying clone phylogeny be regarded with caution

    The origin and role of biological rock crusts in rocky desert weathering

    No full text
    In drylands, microbes that colonise rock surfaces were linked to erosion because water scarcity excludes traditional weathering mechanisms. We studied the origin and role of rock biofilms in geomorphic processes of hard lime and dolomitic rocks that feature comparable weathering morphologies though originating from arid and hyperarid environments, respectively. We hypothesised that weathering patterns are fashioned by salt erosion and mediated by the rock biofilms that originate from the adjacent soil and dust. We used a combination of microbial and geological techniques to characterise rocks morphologies and the origin and diversity of their biofilm. Amplicon sequencing of the SSU rRNA gene suggested that bacterial diversity is low and dominated by Proteobacteria and Actinobacteria. These phyla formed laminar biofilms only on rock surfaces that were exposed to the atmosphere and burrowed up to 6 mm beneath the surface, protected by sedimentary deposits. Unexpectedly, the microbial composition of the biofilms differed between the two rock types and was also distinct from the communities identified in the adjacent soil and settled dust, showing a habitat-specific filtering effect. Moreover, the rock bacterial communities were shown to secrete extracellular polymeric substances that form an evaporation barrier, reducing water loss rates by 65-75%. The reduced water transport rates through the rock also limit salt transport and its crystallisation in surface pores, which is thought to be the main force for weathering. Concomitantly, the biofilm layer stabilises the rock surface via coating and protects the weathered front. Our hypothesis contradicts common models, which typically consider biofilms as weathering-promoting agents. In contrast, we propose the microbial colonisation of mineral surfaces acts to mitigate geomorphic processes in hot, arid environments

    Microbial community response to hydration-desiccation cycles in desert soil

    No full text
    Life in desert soil is marked by episodic pulses of water and nutrients followed by long periods of drought. While the desert flora and fauna flourish after rainfall the response of soil microorganisms remains unclear and understudied. We provide the first systematic study of the role of soil aqueous habitat dynamics in shaping microbial community composition and diversity. Detailed monitoring of natural microbial communities after a rainfall event revealed a remarkable decrease in diversity and a significant transition in community composition that were gradually restored to pre-rainfall values during soil desiccation. Modelling results suggest a critical role for the fragmented aqueous habitat in maintaining microbial diversity under dry soil conditions and diversity loss with wetting events that increase connectivity among habitats. This interdisciplinary study provides new insights into wetting and drying processes that promote and restore the unparalleled microbial diversity found in soil.ISSN:2045-232

    Genes regulated by the <it>Escherichia coli </it>SOS repressor LexA exhibit heterogenous expression

    No full text
    Abstract Background Phenotypic heterogeneity may ensure that a small fraction of a population survives environmental perturbations or may result in lysis in a subpopulation, to increase the survival of siblings. Genes involved in DNA repair and population dynamics play key roles in rapid responses to environmental conditions. In Escherichia coli the transcriptional repressor LexA controls a coordinated cellular response to DNA damage designated the SOS response. Expression of LexA regulated genes, e.g. colicin encoding genes, recA, lexA and umuDC, was examined utilizing transcription fusions with the promoterless gfp at the single cell level. Results The investigated LexA regulated genes exhibited heterogeneity, as only in a small fraction of the population more intense fluorescence was observed. Unlike recA and lexA, the pore forming and nuclease colicin activity genes as well as umuDC, exhibited no basal level activity. However, in a lexA defective strain high level expression of the gene fusions was observed in the large majority of the cells. All of the investigated genes were expressed in a recA defective strain, albeit at lower levels, revealing expression in the absence of a spontaneous SOS response. In addition, the simultaneous expression of cka, encoding the pore forming colicin K, and lexA, investigated at the single cell level revealed high level expression of only cka in rare individual cells. Conclusion LexA regulated genes exhibit phenotypic heterogeneity as high level expression is observed in only a small subpopulation of cells. Heterogenous expression is established primarily by stochastic factors and the binding affinity of LexA to SOS boxes.</p
    corecore