5 research outputs found

    Compositional Heterogeneity of Impact Melt Rocks at the Haughton Impact Structure, Canada: Implications for Planetary Processes and Remote Sensing

    Get PDF
    Connecting the surface expression of impact crater‐related lithologies to planetary or regional subsurface compositions requires an understanding of material transport during crater formation. Here, we use imaging spectroscopy of six clast‐rich impact melt rock outcrops within the well‐preserved 23.5‐Ma, 23‐km diameter Haughton impact structure, Canada, to determine melt rock composition and spatial heterogeneity. We compare results from outcrop to outcrop, using clasts, groundmass, and integrated clast‐groundmass compositions as tracers of transport during crater‐fill melt rock formation and cooling. Supporting laboratory imaging spectroscopy analyses of 91 melt‐bearing breccia and clast samples and microscopic X‐ray fluorescence elemental mapping of cut samples paired with spectroscopy of identical surfaces validate outcrop‐scale lithological determinations. Results show different clast‐rich impact melt rock compositions at three sites kilometers apart and an inverse correlation between silica‐rich (sandstone, gneiss, and phyllosilicate‐rich shales) and gypsum‐rich rocks that suggests differences in source depth with location. In the target stratigraphy, gypsum is primarily sourced from ~1‐km depth, while gneiss is from >1.8‐km depth, sandstone from >1.3 km, and shales from ~1.6–1.7 km. Observed heterogeneities likely result from different excavation depths coupled with rapid quenching of the melt due to high content of cool clasts. Results provide quantitative constraints for numerical models of impact structure formation and give new details on melt rock heterogeneity important in interpreting mission data and planning sample return of impactites, particularly for bodies with impacts into sedimentary and volatile‐bearing targets, e.g., Mars and Ceres

    Pre-Mission Input Requirements to Enable Successful Sample Collection by a Remote Field/EVA Team

    Get PDF
    We used a field excursion to the West Clearwater Lake Impact structure as an opportunity to test factors that contribute to the decisions a remote field team (for example, astronauts conducting extravehicular activities (EVA) on planetary surfaces) makes while collecting samples for return to Earth. We found that detailed background on the analytical purpose of the samples, provided to the field team, enables them to identify and collect samples that meet specific analytical objectives. However, such samples are not always identifiable during field reconnaissance activities, and may only be recognized after outcrop characterization and interpretation by crew and/or science team members. We therefore recommend that specific time be allocated in astronaut timeline planning to collect specialized samples, that this time follow human or robotic reconnaissance of the geologic setting, and that crew member training should include exposure to the laboratory techniques and analyses that will be used on the samples upon their return to terrestrial laboratories

    Compositional Heterogeneity of Impact Melt Rocks at the Haughton Impact Structure, Canada: Implications for Planetary Processes and Remote Sensing

    No full text
    Connecting the surface expression of impact crater‐related lithologies to planetary or regional subsurface compositions requires an understanding of material transport during crater formation. Here, we use imaging spectroscopy of six clast‐rich impact melt rock outcrops within the well‐preserved 23.5‐Ma, 23‐km diameter Haughton impact structure, Canada, to determine melt rock composition and spatial heterogeneity. We compare results from outcrop to outcrop, using clasts, groundmass, and integrated clast‐groundmass compositions as tracers of transport during crater‐fill melt rock formation and cooling. Supporting laboratory imaging spectroscopy analyses of 91 melt‐bearing breccia and clast samples and microscopic X‐ray fluorescence elemental mapping of cut samples paired with spectroscopy of identical surfaces validate outcrop‐scale lithological determinations. Results show different clast‐rich impact melt rock compositions at three sites kilometers apart and an inverse correlation between silica‐rich (sandstone, gneiss, and phyllosilicate‐rich shales) and gypsum‐rich rocks that suggests differences in source depth with location. In the target stratigraphy, gypsum is primarily sourced from ~1‐km depth, while gneiss is from >1.8‐km depth, sandstone from >1.3 km, and shales from ~1.6–1.7 km. Observed heterogeneities likely result from different excavation depths coupled with rapid quenching of the melt due to high content of cool clasts. Results provide quantitative constraints for numerical models of impact structure formation and give new details on melt rock heterogeneity important in interpreting mission data and planning sample return of impactites, particularly for bodies with impacts into sedimentary and volatile‐bearing targets, e.g., Mars and Ceres

    Statistische Entscheidungstechnik

    No full text
    corecore