10 research outputs found

    Feasibility study of an image slicer for future space application

    Get PDF
    This communication presents the feasibility study of an image slicer for future space missions, especially for the integral field unit (IFU) of the SUVIT (Solar UV-Visible-IR telescope) spectro-polarimeter on board the Japanese-led solar space mission Solar-C as a backup option. The MuSICa (Multi-Slit Image slicer based on collimator-Camera) image slicer concept, originally developed for the European Solar Telescope, has been adapted to the SUVIT requirements. The IFU will reorganizes a 2-D field of view of 10 x 10 arcsec2 into three slits of 0.18 arcsec width by 185.12 arcsec length using flat slicer mirrors of 100 μm width. The layout of MuSICa for Solar-C is telecentric and offers an optical quality limited by diffraction. The entrance for the SUVIT spectro-polarimeter is composed by the three IFU slits and one ordinal long slit to study, using high resolution spectro-polarimetry, the solar atmosphere (Photosphere and Chromosphere) within a spectral range between 520 nm (optionally 280 nm) and 1,100 nm

    Kinetic inductance detectors (KIDs) for the SAFARI instrument on SPICA

    Full text link
    Kinetic Inductance Detectors (KIDs) with frequency domain read-out are intrinsically very suitable to use as building blocks for very large arrays. KIDs therefore are an attractive detector option for the SAFARI instrument on SPICA, Millimetron and also for large scale ground based imaging arrays. To study the properties of large KID arrays we have fabricated 400 pixels array made from 40 nm thick Al films on high resistivity Si substrates. The array is tested in a dry dilution refrigerator at 100 mK. We present the device design and experimental results. We also present a new design of the array with lithographic air bridges over the coplanar waveguide feedline. The air bridges are designed to suppress the slot line mode in the feedline and that will improve the pixel to pixel reproducibility of large arrays

    Feasibility study of an image slicer for future space application

    No full text
    This communication presents the feasibility study of an image slicer for future space missions, especially for the integral field unit (IFU) of the SUVIT (Solar UV-Visible-IR telescope) spectro-polarimeter on board the Japanese-led solar space mission Solar-C as a backup option. The MuSICa (Multi-Slit Image slicer based on collimator-Camera) image slicer concept, originally developed for the European Solar Telescope, has been adapted to the SUVIT requirements. The IFU will reorganizes a 2-D field of view of 10 x 10 arcsec2 into three slits of 0.18 arcsec width by 185.12 arcsec length using flat slicer mirrors of 100 μm width. The layout of MuSICa for Solar-C is telecentric and offers an optical quality limited by diffraction. The entrance for the SUVIT spectro-polarimeter is composed by the three IFU slits and one ordinal long slit to study, using high resolution spectro-polarimetry, the solar atmosphere (Photosphere and Chromosphere) within a spectral range between 520 nm (optionally 280 nm) and 1,100 nm

    CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    No full text
    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission (expected to launch in 2017) dedicated to search for exoplanet transits by means of ultra-high precision photometry. CHEOPS will provide accurate radii for planets down to Earth size. Targets will mainly come from radial velocity surveys. The CHEOPS instrument is an optical space telescope of 30 cm clear aperture with a single focal plane CCD detector. The tube assembly is passively cooled and thermally controlled to support high precision, low noise photometry. The telescope feeds a re-imaging optic, which supports the straylight suppression concept to achieve the required Signal to Noise. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Image resolution and performance analysis of webcams for ground based astronomy

    No full text
    We present here a novel concept for achieving real-time super-resolution ground-based imagery for small aperture telescopes. We explore the combination of existing stacking and registration software in conjunction with real-time equation based Data Models. Our research indicates that for anisoplanatic imagery, a real-time video/software enhanced analog to conventional speckle imaging is possible. This paper highlights the technique and theory for creating such a system

    AKARI infrared bright source catalogues

    No full text
    Bright source catalogues based on the new mid- and far-infrared all-sky survey by the infrared astronomical satellite AKARI were released into the public domain in March 2010. The mid-infrared catalogue contains more than 870 thousand sources observed at 9 and 18 µm, and the far-infrared catalogue provides information of about 427 thousand sources at 65, 90, 140, and 160 µm. The AKARI catalogues will take over the IRAS catalogues and will become one of the most important catalogues in astronomy. We present the characteristics of the AKARI infrared source catalogues as well as current activity for the future versions

    Optical ground support equipment for the alignment of JWST-NIRSpec

    No full text
    The alignment of the JWST NIRSpec spectrograph will use a customised set of optical light sources, imagers and wavefront sensors, which form part of the Optical Ground Support Equipment (OGSE). This has been developed by the Mullard Space Science Laboratory (MSSL) and the Centre for Advanced Instrumentation (CfAI) to be used at the Astrium GmbH, Ottobrunn (Germany) during NIRSpec integration. This paper describes the five precision illumination sources which form a key part of NIRSpec OGSE, and the optomechanical design of the three Shack-Hartmann wavefront sensors used

    AIV procedure for a CHEOPS demonstration model

    No full text
    The CHaracterizing ExOPlanet Satellite (CHEOPS) is an ESA Small Mission whose launch is planned for the end of 2017. It is a Ritchey-Chretien telescope with a 320 mm aperture providing a FoV of 0.32 degrees, which will target nearby bright stars already known to host planets, and measure, through ultrahigh precision photometry, the radius of exo-planets, allowing to determine their composition. This paper will present the details of the AIV plan for a demonstration model of the CHEOPS Telescope with equivalent structure but different CTEs. Alignment procedures, needed GSEs and devised verification tests will be described and a path for the AIV of the flight model, which will take place at industries premises, will be sketched. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE)
    corecore