32 research outputs found

    Structural analysis of magnetic nanocomposites based on chitosan

    Get PDF
    This work investigates the structure and magnetic properties of chitosan based films with different contents of magnetic nanoparticles (MNPs) of around 10 nm as well as the effects of the addition of glycerol as plasticizer. Synthesized MNPs were dispersed in the chitosan film forming solution by ultrasonication and then composite films were obtained by casting. From the morphological analysis, a bimodal distribution of clusters was detected; the larger ones seem to be present mostly in the plasticized samples. Regarding the mechanical behavior of the samples, for the non-plasticized samples the outstanding increase in modulus and strength with the increasing content of MNP was explained by a strong interfacial adhesion and very good particles dispersion into the chitosan matrix. This fact was also supported by the model applyed to the strength as a function of the volume fraction of MNP. Regarding magnetic properties, all nanocomposite films evidenced systems with particles of strong dipolar interactions that lead to blocking and irreversibility temperatures close to room temperature (RT). Even though the isothermal magnetization results showed that the particles in the nanocomposite films behave as super-paramagnetic at the highest analyzed temperature (RT). Langevin model as well as FESEM and SAXS analysis supported the hypothesis that the formation of aggregates with different features dominates the magnetic response through collective behavior, mainly in the plasticized films.Fil: Kloster, Gianina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Muraca, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Moscoso Londoño, Oscar. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Knobel, Marcelo. Universidade Estadual de Campinas; BrasilFil: Marcovich, Norma Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Mosiewicki, Mirna Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin

    Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Get PDF
    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).Fil: Londoño Calderon, Cesar Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; ArgentinaFil: Moscoso Londoño, Oscar. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muraca, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Estadual de Campinas; Brasil. Brazilian Center for Research in Energy and Materials. Brazilian Nanotechnology National Laboratory; BrasilFil: Arzuza, Luis. Universidade Estadual de Campinas; BrasilFil: Carvalho, Peterson. Universidade Estadual de Campinas; BrasilFil: Pirota, Kleber Roberto. Universidade Estadual de Campinas; BrasilFil: Knobel, Marcelo. Universidade Estadual de Campinas; BrasilFil: Pampillo, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Martinez Garcia, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Formosa. Facultad de Recursos Naturales; Argentin

    Nanoferrites-Based Drug Delivery Systems as Adjuvant Therapy for Cancer Treatments. Current Challenges and Future Perspectives

    Get PDF
    Cancer is the second cause of death worldwide, whose treatment often involves chemotherapy. In a conventional therapy, drug is transported (and usually absorbed) across biological membranes through diffusion and systemic transport. The pathway that medicine must travel before reaching the desired location, can bring adverse or unwanted effects, which are mainly the result of: low bioavailability, low solubility and toxicity. To avoiding risks, nanoparticles coated with the drug could be used as a therapeutic substance to selectively reach an area of interest to act without affecting non-target cells, organs, or tissues (drug delivery). Here, the goal is to enhance the concentration of the chemotherapeutic drug in the disease parts of the body. Among all nanostructured systems, ferrites attract worldwide attention in drug delivery applications. It is due to their versatile magnetic and physicochemical properties. Here, it is reviewed and analyzed recent advances in synthesis, morphology, size, magnetic properties, functionalization with a focus in drug delivery applications of nanoferrites

    Design of super-paramagnetic bilayer films based on chitosan and sodium alginate

    Get PDF
    Bilayer films that combine chitosan and alginate, two natural polysaccharides, and magnetic iron oxide nanoparticles (MNPs) were obtained. Physical and microscopic observations revealed that chitosan and alginate interact strongly through their surfaces, which is attributed to the formation of a polyelectrolyte complex at the interface. The diameter of the individual MNPs was about 10 nm, although in the films they appear arranged in clusters with sizes ranging from 23 nm to several times larger that are formed by collapsed individual particles. All bilayers containing MNP behave as super-paramagnetic materials, exhibiting magnetic synergic effects in comparison to single carbohydrate films. Thus, obtained films could find novel and interesting applications as pH responsiveness systems, pad dressings including hyperthermia, adsorption of positive and negative charged pollutants, etc.Fil: Kloster, Gianina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Moscoso Londoño, Oscar. Universidad Autónoma de Manizales; Colombia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pirota, Kleber R.. Universidade Estadual de Campinas; BrasilFil: Mosiewicki, Mirna Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Marcovich, Norma Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin

    Significant coercivity enhancement at low temperatures in magnetically oriented cobalt ferrite nanoparticles

    Get PDF
    The present work describes a synthesis and characterization strategy employed to study the magnetic anisotropic properties of a diluted nanoparticulate system. The system under analysis is composed of monodisperse and highly crystalline 16 nm Co0.5Fe2.5O4 nanoparticles (NPs), homogenously dispersed in 1-octadecene. Owing to the liquid nature of the matrix at room temperature, the relative orientation of the nanoparticle easy axis can be controlled by an external magnetic field, enabling us to measure how the magnetic properties are modified by the alignment of the particles within the sample. In turn, by employing this strategy, we have found a significant hardness and squareness enhancement of the hysteresis loop in the magnetically oriented system, with the coercive field reaching a value as high as 30.2 kOe at low temperatures. In addition, the magnetic behavior associated with the system under study was supported by additional magnetic measurements, which were ascribed to different events expected to take place throughout the sample characterization, such as the melting process of the 1-octadecene matrix or the NP relaxation under the Brownian mechanism at high temperatures.Fil: Tancredi, Pablo. Instituto Nacional de Tecnología Industrial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Rivas Rojas, Patricia Carolina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moscoso Londoño, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muraca, Diego. Universidade Estadual de Campinas; BrasilFil: Knobel, Marcelo. Universidade Estadual de Campinas; BrasilFil: Socolovsky, Leandro Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentin

    Strategies to tailor the architecture of dual Ag/Fe-oxide nano-heterocrystals—interfacial and morphology effects on the magnetic behavior

    Get PDF
    Bifunctional nanostructured architectures have shown appealing properties, since a single entity can combine the diverse properties of its individual constituents. Particularly, by growing Fe-oxide domains over Ag nanoparticles, the plasmonic and superparamagnetic properties can be combined in a single particle. Beyond the multifunctionality of this system, there are several properties that emerge from intrinsic factors, such as: interface and/or morphology. In this study, we present the synthesis protocols to obtain two sets of heterocrystals, each one with different morphology: dimer and flower-like. In addition, the magnetization behavior of these hybrid nano-heterocrystals is investigated and discussed. These nanomaterials were built by a seed assisted heterogeneous nucleation process, carried out in organic solvents of high boiling point, using the same batch of silver nanoparticles with a mean size of 6 nm as seeds, and tuning the electron-donor capacity of the reaction environment at the thermal decomposition of the iron precursor. Ag/Fe3O4 heterocrystals with dimer and flower-like morphologies were obtained. The synthesis protocols for generating these types of nanomaterials are discussed step-by-step. Structural and morphological properties were determined by transmission electron microscopy, x-ray diffraction and x-ray absorption fine structure. DC magnetization results suggest that the silver/magnetite coupling generates an increase of the blocking temperature in comparison to those obtained from pure magnetite. This behavior could be linked to a possible increase in the magnetic anisotropy produced by an additional disorder at the Ag–Fe3O4 interface. The higher interface area of the Ag/Fe3O4 heterocrystals with flower-like architecture leads to a higher blocking temperature and a stronger magnetic anisotropy. These results are supported by AC susceptibility data.Fil: Tancredi Gentili, Pablo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Moscoso Londoño, Oscar. Universidad Autónoma de Manizales; Colombia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidade Estadual de Campinas; BrasilFil: Rivas Rojas, Patricia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física. Laboratorio de Sólidos Amorfos; ArgentinaFil: Wolff, U.. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Socolovsky, Leandro Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; ArgentinaFil: Knobel, M.. Universidade Estadual de Campinas; BrasilFil: Muraca, D.. Universidade Estadual de Campinas; Brasi

    Magnetic nanocomposites based on shape memory polyurethanes

    Get PDF
    Shape memory composites based on a commercial segmented polyurethane and magnetite (Fe3O4) nanoparticles (MNPs) were prepared by a simple suspension casting method. The average sizes of individual magnetic particles/clusters were determined by TEM microscopy and corroborated from SAXS patterns. The magnetization properties of selected samples were evaluated using zero field cooling/field cooling (ZFC/FC) measurements and magnetization loops obtained at different temperatures. The results showed that magnetization at high field (20 k Oe) and coercitivity measured at 5 K increase with magnetite content and that all the composite films exhibit superparamagnetic behavior at 300 K. The specific absorption rate (SAR) of the nanocomposites was calculated by experimentally determining both the specific heat capacity and the heating rate of the films exposed to an alternant magnetic field. All nanocomposites were able to increase their temperature when exposed to an alternant magnetic field, although the final temperature reached resulted dependent of the MNPs concentration. What is more, a fast and almost complete recovery of the original shape of the nanocomposites containing more than 3 nominal wt.% MNP was obtained by this remote activation applied to the previously deformed samples.Instituto de Física La Plat

    Magnetic nanocomposites based on shape memory polyurethanes

    Get PDF
    Shape memory composites based on a commercial segmented polyurethane and magnetite (Fe3O4) nanoparticles (MNPs) were prepared by a simple suspension casting method. The average sizes of individual magnetic particles/clusters were determined by TEM microscopy and corroborated from SAXS patterns. The magnetization properties of selected samples were evaluated using zero field cooling/field cooling (ZFC/FC) measurements and magnetization loops obtained at different temperatures. The results showed that magnetization at high field (20 k Oe) and coercitivity measured at 5 K increase with magnetite content and that all the composite films exhibit superparamagnetic behavior at 300 K. The specific absorption rate (SAR) of the nanocomposites was calculated by experimentally determining both the specific heat capacity and the heating rate of the films exposed to an alternant magnetic field. All nanocomposites were able to increase their temperature when exposed to an alternant magnetic field, although the final temperature reached resulted dependent of the MNPs concentration. What is more, a fast and almost complete recovery of the original shape of the nanocomposites containing more than 3 nominal wt.% MNP was obtained by this remote activation applied to the previously deformed samples.Instituto de Física La Plat

    Structural and magnetic behavior of ferrogels obtained by freezing thawing of polyvinyl alcohol/poly (acrylic acid) (PAA)-coated iron oxide nanoparticles

    Get PDF
    Superparamagnetic ferrogels with high swelling ability and potential applications as solvent absorbers and stimuli-responsive drug delivery devices were obtained by a non-toxic and environmentally friendly route based on dispersion of poly(acrylic acid)-coated iron oxide nanoparticles (PAA-coated NPs) in poly(vinyl alcohol) (PVA) solutions followed by freezing–thawing. Presence of carboxylate groups arising from the PAA coating allowed hydrogen bonding formation between NPs and PVA and enabled the synthesis of optically homogenous, superparamagnetic materials formed by a homogenous distribution of NPs diffuse clusters in the PVA matrix. The addition of PAA-coated NPs produced a remarkable increase in crystallinity degree, thermal degradation and swelling percentage respect to the neat matrix, which demonstrates that ferrogels with improved properties can be obtained by this procedure. Thereafter, combination of a cryogenic technique with the use of non-toxic components and magnetic NPs coated by a pH sensitive polymer makes these ferrogels very promising for applications in the biomedical field.Fil: Moscoso Londoño, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Fisica. Laboratorio de Sólidos Amorfos; ArgentinaFil: Gonzalez, Jimena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Muraca, D.. Universidade Estadual de Campinas. Instituto de Física ’Gleb Wataghin’. Laboratorio de Materiais e Baixas Temperaturas; Brasil;Fil: Hoppe, Cristina Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: López Quintela, A.. Universidad de Santiago de Compostela; España;Fil: Socolovsky, Leandro Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto D/tec.y Cs.de la Ing.;Fil: Pirota, K. R.. Universidade Estadual de Campinas. Instituto de Física ’Gleb Wataghin’. Laboratorio de Materiais e Baixas Temperaturas; Brasil

    Consequences of Magnetic Interaction Phenomena in Granular Systems

    No full text
    Magnetic interactions in systems composed of nanoparticles in a matrix give rise to phenomena that are observable through magnetic and magnetotransport measurements. In this article, we present some basic concepts and review a useful technique for characterizing those systems, which represents a class of magnetization versus temperature measurement, ZFC-FC curves. Based on this tool we comment on some results on granular systems: diluted, interacting, and percolated superparamagnets. We also discuss how those magnetic features affect magnetotransport properties like giant magnetoresistance, tunneling magnetoresistance, and the giant Hall effect.Fil: Socolovsky, Leandro Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; ArgentinaFil: Moscoso Londoño, Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina. Universidade Estadual de Campinas; Brasi
    corecore