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18th September 2018.

Prof. Mikael Hedenqvist
Editor
Polymer Testing

Ref: POTE_2018_1045
Title: STRUCTURAL ANALYSIS OF NANOCOMPOSITES WITH MAGNETIC 
CHARACTER BASED ON CHITOSAN (title of the original submission: SYNTHESIS 
AND STRUCTURAL CHARACTERIZATION OF NANOCOMPOSITES WITH 
MAGNETIC CHARACTER BASED ON CHITOSAN) 

Authors: Gianina A. Kloster, Diego Muraca, Oscar Moscoso Londoño, Marcelo Knobel, 
Norma E. Marcovich and Mirna A. Mosiewicki.

Dear Prof. Mikael Hedenqvist,

We are sending to you the corrected version of our manuscript. We have carefully 
revised the manuscript according to the comments of the reviewers, as addressed below.

Comments from the editors and reviewers:
-Reviewer 1

Comments on „STRUCTURAL ANALYSIS OF NANOCOMPOSITES WITH MAGNETIC CHARACTER 
BASED ON CHITOSAN" (POTE_2018_1045).

The manuscript by Kloster et al. describes the preparation and characterization of several chitosan 
films containing various amounts of magnetic nanoparticles (magnetic iron oxides). The authors 
used several methods in the studies, for example X-ray diffraction, TEM, SAXS, TGA, and FE-SEM. 
In general, the work is fine and thorough. I do, however, have a problem with the novelty of the 
manuscript. Incorporation of iron oxide nanoparticles into chitosan matrices is well known in the 
literature. Also, the authors have published an article on the production of chitosan nanocomposite 
films via in situ magnetite synthesis. Therefore, the most important for this work is to compare the 
results with those previously reported in the literature and to show the novelty and improvements, 
especially why the present method of preparation is better than others.   

-We thank very much the reviewer comments about the fineness and completeness of our 
manuscript and we confirm that the aim of it is justly, to compare the results with those 
previously reported in the literature (including our own results), trying to explain the 
observed differences and similarities on a scientific basis. Anyhow we want to point out 
that although there are, in fact, a lot of papers that deal with chitosan/magnetite 
composites, most of the research efforts in this topic were focused to the preparation 
and characterization of composite particles (i.e. chitosan used as a coating onto the 
magnetite core) while the behavior of magnetic/chitosan composite films (i.e. a 
continuous chitosan matrix containing magnetite particles as filler) was scarcely 
studied despite the good film forming properties of the biopolymer.

Some detailed remarks:

1. The title should be corrected. The current suggests that chitosan has magnetic character.



-According to the suggestion of the reviewer, the title was modified. 

2. The language needs to be improved, for example "quitosan" is not in English.

-The reviewer was right and thus, the English of the manuscript was proofread and 
improved. 

3. How did the authors determine the film thickness?

-It was measured with a micrometer in five random locations of the film. Just to clarify 
this point we added a new paragraph in the manuscript. 

4. What type of sonicator was used for sample preparation? This is important, because 
sonication can degrade the polymer.

-As it is know, sonication is of great importance in this type of materials in order to 
efficiently disperse the nanoparticles in the film forming suspension. However, the 
reviewer is right about the fact that sonication can degrade the polymer. In order to 
minimize any change in the polymer conformation and/or structure, the time of 
sonication used was optimized to be the minimum to obtain macroscopically 
homogeneous dispersions. Taking into account this fact, even when we did not make any 
study of degradation induced by sonication, all the suspensions, including chitosan 
solutions without particles, were put through under the same sonication conditions in 
order to have the same preparation method in all the films and consequently, 
comparative results. In addition, the information about the sonicator used in this work 
was included in the “Preparation of composite films” section. 

5. The effect of the MNP presence on the temperature of chitosan degradation is very 
interesting. However, the explanation of this effect seems unreasonable. The temperature 
reduction is rather too large to be assign to the changes in polymer conformation.

-We appreciate very much the comment of the reviewer. Right now we can ensure that 
we read all the related scientific papers we could trace in order to find any convincing 
explanation to this behavior. However, and although we confirmed that the presence of 
MNP decreases the thermal resistance of chitosan samples, we only can conclude that 
there are many different factors that contribute to this complex degradation process, but 
not quantifying their relative importance. Thus, we added new information to the 
original text, trying to expand the original information:
"Regarding magnetic composite films, it can be observed that the addition of MNP only 
slightly affects the degradation at the first and second steps. However, the temperatures 
related with the third step (temperature at the maximum degradation rate and the initial 
decomposition temperature) decrease significantly as the iron oxide content increases 
(Table 1). This effect was also noticed in other related works, for example, in our 
previous work we associated it with the changes in the conformation of the chitosan 
surrounding the particles in comparison with the chitosan in bulk [Kloster et al, 2015]. 
Soto et al (2018) also reported a decreased thermal stability, in comparison with that of 
the neat polymeric matrix, in their nanocomposite films based on a commercial shape 
memory polyurethane and different contents of magnetic iron oxides, which was 
associated to the increase in the thermal conductivity and thermal diffusivity of the 
material due to the addition of MNP. Additionally, Bertolino et al (2018) found that 
their nanocomposites based on chitosan and halloysite nanotubes, also prepared by 
casting, did not present any thermal stabilization effect due to the presence of particles. 
They related this fact to the adsorption of positive biopolymer on the halloysite external 



surface, also with positive charge. In our case it should be noticed that chitosan - MNP 
suspensions were prepared in acetic acid solutions (i.e. acidic pH) and in this condition 
both, chitosan and Fe3O4 nanoparticles, are also positively charged (i.e. the isoelectric 
point of the MNP is around 6.85 as reported in Xu et al, 2006; Regazzoni et al, 1981 
and Kloster et al, 2017. Moreover, Moeini et al (2018) indicated for chitosan based 
microbeads cross-linked by using sodium tripolyphosphate (TPP) that some domains in 
which the electrostatic repulsion prevailed could trigger a less packed structure more 
prone to the thermal degradation, which match exactly the present case. In this sense, 
these changes in the macromolecular backbone structure of the polymer would induce 
the weakening of the attractive intra-inter-molecular hydrogen bonds and thus, chitosan 
macromolecular chains would result more exposed to the random splitting of the 
glycosidic bonds that takes place during the thermal degradation process. Additionally, 
Ziegler-Borowska et al (2016) indicated that a slight decrease in the initial 
decomposition temperature of the magnetite-modified chitosan nanocomposite 
particles, in comparison with the respective chitosan derivatives (including unmodified 
chitosan), was observed in all cases and attributed to the presence of Fe3O4. They 
concluded that magnetite exhibited a catalytic action on the thermal degradation of 
chitosan and its derivatives, but did not outline any explanation for this behavior. 
Moreover, in a previous publication (Ziegler-Borowska et al, 2015) they emphasized 
that magnetite NPs enhance thermo-oxidative degradation of polymers. In brief, we 
believe that the decreased thermal stability of the nanocomposites, in comparison to 
those of the corresponding neat matrices, is due to several complex and interrelated 
factors.

References: 
-G.A. Kloster, N.E. Marcovich, M.A. Mosiewicki, Composite films based on chitosan 
and nanomagnetite, European Polymer Journal. 66 (2015) 386–396. 
doi:10.1016/j.eurpolymj.2015.02.042.
-G.D. Soto, C. Meiorin, D. Actis, P. Mendoza Zélis, M.A. Mosiewicki, N.E. Marcovich, 
Nanocomposites with shape memory behavior based on a segmented polyurethane and 
magnetic nanostructures, Polymer Testing. 65 (2018) 360–368. 
doi:10.1016/j.polymertesting.2017.12.012.
-V. Bertolino, G. Cavallaro, G. Lazzara, S. Milioto, F. Parisi, Halloysite nanotubes 
sandwiched between chitosan layers: Novel bionanocomposites with multilayer 
structures, New Journal of Chemistry. 42 (2018) 8384–8390. doi:10.1039/c8nj01161c.
-X.Q. Xu, H. Shen, J.R. Xu, M.Q. Xie, X.J. Li, The colloidal stability and core-shell 
structure of magnetite nanoparticles coated with alginate, Applied Surface Science. 253 
(2006) 2158–2164. doi:10.1016/j.apsusc.2006.04.015.
-A.E. Regazzoni, G.A. Urrutia, M.A. Blesa, A.J.G. Maroto, Some observations on the 
composition and morphology of synthetic magnetites obtained by different routes, 
Journal of Inorganic and Nuclear Chemistry. 43 (1981) 1489–1493. doi:10.1016/0022-
1902(81)80322-3.
-G.A. Kloster, D. Muraca, M.A. Mosiewicki, N.E. Marcovich, Magnetic composite fi lms 
based on alginate and nano-iron oxide particles obtained by synthesis “ in situ ,” 
European Polymer Journal. 94 (2017) 43–55.
-A. Moeini, A. Cimmino, G. Dal Poggetto, M. Di Biase, A. Evidente, M. Masi, P. 
Lavermicocca, F. Valerio, A. Leone, G. Santagata, M. Malinconico, Effect of pH and 
TPP concentration on chemico-physical properties, release kinetics and antifungal 
activity of Chitosan-TPP-Ungeremine microbeads, Carbohydrate Polymers. 195 (2018) 



631–641. doi:10.1016/j.carbpol.2018.05.005.
-M. Ziegler-Borowska, D. Chełminiak, H. Kaczmarek, A. Kaczmarek-Kędziera, Effect of 
side substituents on thermal stability of the modified chitosan and its nanocomposites 
with magnetite, Journal of Thermal Analysis and Calorimetry. 124 (2016) 1267–1280. 
doi:10.1007/s10973-016-5260-x.
-M. Ziegler-Borowska, D. Chełminiak, H. Kaczmarek, Thermal stability of magnetic 
nanoparticles coated by blends of modified chitosan and poly(quaternary ammonium) 
salt, Journal of Thermal Analysis and Calorimetry. 119 (2015) 499–506. 
doi:10.1007/s10973-014-4122-7.

6. Page 13, does the formation of MNP clusters have any advantages over homogenously 
dispersed magnetic particles?

-Depending on the application, the formation of clusters from individual nanoparticles 
could present some advantages in comparison with systems containing more 
homogeneously dispersed magnetic nanoparticles. 

Certainly the magnetic response of the clusters is different than that of the individual 
particles. When the particles are close enough, the magnetic moment of each particle 
will be affected by those of the neighbor ones due to magnetic dipolar interactions. 
Thus, the magnetic moment of an agglomerate of magnetic nanoparticles will be 
different from the individual magnetic moment of each nanoparticle (Knobel et al, 
2004). Considering that one of the possible applications for these films is their use in 
water remediation (i.e. removal of ions from water), the possibility of heating by 
application of an external magnetic field can be a useful characteristic to activate the 
adsorption/desorption character of these materials when immersed in the fluid, just to 
mention one specific example.
However, results regarding the most efficient nanoparticles configuration 
(agglomerated or totally dispersed) are still controversial. While it is expected that 
fully dispersed nanoparticles should be the best nanoparticle configuration, several 
reports show that inter-particle dipole interactions in clusters can contribute positively 
to magnetic hyperthermia or magnetic heating properties. For example, Fu et al 
(2018) recently indicated that "dipole interactions are inclined to improve the 
hyperthermia heating only when the clusters are small enough to induce an 
enhancement in clusters’ shape anisotropy. Once the clusters are losing their shape 
anisotropy, dipole interactions will change to impair the heating. When the clusters are 
totally isotropic in shape, it is hard for them to provide a heating better than non-
interacting particles do, even though the heating efficiency could rebound by somewhat 
at a particular size." 
Anyhow, in order to confirm that the clusters of nanoparticles are improving the 
efficiency of the composite for the specific case reported here, we need to compare its 
behavior with that of a similar system made from perfectly dispersed nanoparticles, 
which is far from the scope of this work.
Alternatively, regarding mechanical properties of composites, the change of the 
properties (i.e. modulus, resistance, elongation at break) with respect to those of the 
neat matrix is expected to be higher, for the same concentration of filler, if the 
particles are homogenously dispersed. Moreover, in any property that needs a strong 



interaction particle-matrix, homogenously dispersed particles are preferable to 
clusters, due to the favorable ratio area/volume of the former configuration.
On the other hand, the method of preparation not only changes the dispersion and size 
of the particles and/or clusters into the matrix. Different methods of synthesis lead to 
different degrees of interaction of the particles with the matrix and the amount of 
plasticizer that can be retained into the film (see answer to reviewer 2). The synthesis 
of magnetic particles and posterior incorporation into the chitosan solution seems to 
lead to a weaker interaction between matrix and particles/clusters than the "in situ" 
synthesis and in this way; the magnetic entities are freer to react in the presence of an 
external magnetic field. In addition, this last method allows a better control of the 
amount of plasticizer required in the films that can significantly affect some specific 
properties (for example, mechanical ones) in comparison with that of the 
nanocomposite films prepared by the “in situ” method.

References:
-M. Knobel, L.M. Socolovsky, J.M. Vargas, Propiedades magnéticas y de transporte de 
sistemas nanocristalinos : conceptos básicos y aplicaciones a sistemas reales, Revista 
Mexicana de Física. 50 (2004) 8–28.
-R. Fu, Y. Yan, C. Roberts, Z. Liu, Y. Chen, The role of dipole interactions in 
hyperthermia heating colloidal clusters of densely-packed superparamagnetic 
nanoparticles, Scientific Reports. 8 (2018) 1–10. doi:10.1038/s41598-018-23225-5.

7.       Page 15, the authors wrote "The increase of modulus is related with the high rigidity of the 
MNP in comparison with that of the polymeric matrix and can be expected if the particles are 
homogeneously distributed and no pores or bubbles are generated during drying of the 
composite". However, the MNP particles are not homogeneously distributed in the chitosan matrix, 
as shown in Figure 3.

-Even when the particles can group forming clusters of obviously higher sizes than that 
of the individual entities, these agglomerates can also be homogeneously distributed 
into the matrix and contribute to increase the modulus of the composite. Anyhow, we 
modified the corresponding paragraph in order to clarify this point.

8.       The conclusion, "A simple procedure" is not true. The presented procedure is more 
complicated compared to the "in situ" method, since it requires isolation of MNP particles and 
resuspension in the chitosan solution. 

-We clearly understood the point of view of the reviewer and therefore we want to make 
some clarifications. The “in situ” method seems to be simpler than that used in this 
work at least in the first step of preparation because the particles are not synthesized 
prior to their incorporation into the matrix. However, the final steps of the "in situ" 
method are not so simple. In fact, the “in situ” method requires first the film formation 
(drying in a convective oven), then the immersion of the film into the alkali solution to 
induce the particle formation, then successive washes until neutral pH. These steps 
make more complex the procedure and even part of the plasticizer can be lost in the 
successive washings, cracking/void formation in the film can be induced due to 
manipulation or partial solubilization/disintegration of the polymeric matrix, etc. 
However, we agree with the reviewer that the phrase “A simple procedure” is not the 
more representative for this system and thus, we modified the “conclusions” section 
according with this idea.



-Reviewer 2

  - In the description of FE-SEM it should be indicated that cryofracture surface of films were 
analyzed.

- This information was included in this revised version of the manuscript. 

A comment or intepretation of the effect of glycerol on the initial temperature of degradation and 
the temperature of maximum degradation rate for the 3rd step mus be included.

- We appreciate this observation. A new paragraph was added in the section 
corresponding to thermal degradation analysis to take into account the comment of the 
reviewer, as follows:
Table 1 presents the temperature at the maximum degradation rate and the initial 
decomposition temperature of the last degradation step. It is clear that the plasticizer 
produces a movement of the third step to higher temperatures. Higher thermal stability 
with the presence of glycerol in films of chitosan was also reported in the works of 
Debandi and co-workers (2016) and Fundo et al (2015). In the last case, authors 
indicated that plasticizer addition increased the melting enthalpy, i.e., increases the 
samples crystallinity, and attributed this effect to glycerol interaction with chitosan 
chains indicating that the H-bonds stabilize chitosan crystals. They also noticed that the 
main peak shifted to higher melting temperatures when increasing plasticizer 
concentration, which correlated well with other published results [Rivero et al, 2010] 
and may be also related with an increase of the strength of the H-bonds stabilizing 
chitosan crystals in the presence of plasticizer, as indicated by [Okuyama et al, 1997]. 
Thus, although part of the glycerol is lost in the first stage of degradation, as was 
mentioned above, a high percentage remain retained in the polymer structure because 
of these strong intermolecular interactions developed with chitosan. As a consequence, 
plasticized samples are not only more crystalline than unplasticized films, but also 
contain more stable crystals that start to degrade at higher temperature. Moreover, due 
to the different initial structures of plasticized and non plasticized films, there should be 
diffusive changes in the volatile products and pyrolysis wastes generated in the second 
step of degradation that also could affect the degradation pattern of the last step.

References: 
-M. V. Debandi, C. Bernal, N.J. Francois, Development of biodegradable films based 
on chitosan/glycerol blends suitable for biomedical applications, Journal of Tissue 
Science & Engineering. 07 (2016). doi:10.4172/2157-7552.1000187.
-J.F. Fundo, A.C. Galvis-Sanchez, I. Delgadillo, C.L.M. Silva, M.A.C. Quintas, The 
effect of polymer/ plasticiser ratio in film forming solutions on the properties of 
chitosan films, Food Biophysics. 10 (2015) 324–333. doi:10.1007/s11483-015-9394-3.
-S. Rivero, M.A. García, A. Pinotti, Correlations between structural, barrier, thermal 
and mechanical properties of plasticized gelatin films, Innovative Food Science and 
Emerging Technologies. 11 (2010) 369–375. doi:10.1016/j.ifset.2009.07.005.
-K. Okuyama, K. Noguchi, T. Miyazawa, T. Yui, K. Ogawa, Molecular and crystal 
structure of hydrated chitosan, Macromolecules. 30 (1997) 5849–5855. 
doi:10.1021/ma970509n.

Since glycerol content was constant for all the plaxticized samples authors must revised the 
phrase: "The ultimate deformation does not present a clear trend, neither with respect to 
magnetite concentration, nor with respect to glycerol content"



-All the plasticized samples present the same content of glycerol with respect to the 
chitosan mass; however, the phrase is related with the insignificant variation in the 
ultimate deformation comparing plasticized samples with unplasticized ones. 
Anyhow and to avoid misunderstandings, a phrase was added to the original 
paragraph, as follows:

" nor with respect to glycerol content (i.e. comparing S samples with SG samples 
at fixed magnetite concentration)."

Please, let us know if further explanations or corrections are needed.

Sincerely yours,

Dr Mirna A. Mosiewicki
mirna@fi.mdp.edu.ar

mailto:mirna@fi.mdp.edu.ar
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obtained. 
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 Bimodal cluster size distribution was detected.
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Abstract

This work investigates the structure and magnetic properties of chitosan based films with 

different contents of magnetic nanoparticles (MNPs) of around 10 nm as well as the effects 

of the addition of glycerol as plasticizer. Synthesized MNPs were dispersed in the chitosan 

film forming solution by ultrasonication and then composite films were obtained by 

casting. From the morphological analysis, a bimodal distribution of clusters was detected; 

the larger ones seem to be present mostly in the plasticized samples. Regarding the 

mechanical behavior of the samples, for the non-plasticized samples the outstanding 

increase in modulus and strength with the increasing content of MNP was explained by a 

strong interfacial adhesion and very good particles dispersion into the chitosan matrix. This 



2

fact was also supported by the model applyed to the strength as a function of the volume 

fraction of MNP.

Regarding magnetic properties, all nanocomposite films evidenced systems with particles 

of strong dipolar interactions that lead to blocking and irreversibility temperatures close to 

room temperature (RT). Even though the isothermal magnetization results showed that the 

particles in the nanocomposite films behave as super-paramagnetic at the highest analyzed 

temperature (RT), Langevin model as well as FESEM and SAXS analysis supported the 

hypothesis that the formation of aggregates with different features dominates the magnetic 

response through collective behavior, mainly in the plasticized films.

Keywords

Nanocomposite films

Chitosan 

Iron oxide nanoparticles

Magnetic properties

1 INTRODUCTION

The study and use of nanocomposites based on biopolymers with a magnetic 

disperse phase is an important area of research in constant growth due to potential 

applications, including uses in biomedicine, biotechnology and wastewater treatment [1,2], 

for example. The choice of a polymer with chelating properties such as chitosan has shown 

very promising results in the treatment of contaminated water with heavy metal ions, 

herbicides and dyes [3–5]. Chitosan is a biodegradable polymer extracted from the 

deacetylation of the chitin, major component of crustacean's shells and fungal biomass. 
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This cationic polysaccharide, composed by -(1,4)-2-amino-2-deoxy-D-glucopyranose 

units and small quantity of N-acetyl-D-glucosamine residues [6,7], displays interesting 

properties including biocompatibility, non-toxicity, good film forming ability, antibacterial 

and antifungal activity [8]. It contains several reactive groups that interact with metal ions 

through various mechanisms depending on the involved ion, the pH, and solution 

composition [9], acting as an excellent adsorbent agent.

The incorporation of iron oxide nanoparticles (NPs) as a disperse phase allows 

obtaining a nanocomposite that could provide interesting properties. For example, these 

nanocomposites could be easily removed from water with the help of an external magnet 

[10], while remaining environmental friendly due to the low toxicity and biocompatible 

characteristics of the iron oxides [11]. The magnetic properties of the composites will be 

determined principally by the nanoparticle magnetic properties and their interactions. When 

the size of the iron oxide NPs is below a critical size (<15 nm [12]), they could exhibit 

superparamagnetic behavior and thus, even embedded in a polymeric matrix, the magnetic 

moment of each NP will follow the direction of the applied magnetic field allowing to 

move or attract the nanocomposite with an external magnetic field. In this line, Zhuang et 

al. [13] have synthesized Fe3O4−SiO2−SrHAp microspheres for the immobilization of Pb 

(II), which were simply collected from water by magnetic separation.

The interaction between chitosan and iron oxides NPs is explained through complex 

mechanisms of electrostatic forces and interactions occurring between polar groups [14–

18]. Different methods of synthesis have been applied to obtain chitosan/iron oxide 

nanocomposites. For instance, Bezdorozhev et al. [19] have reported the synthesis of 

magnetite-chitosan nanostructures by the chemical precipitation of magnetite NPs in the 
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presence of chitosan. In that work, the authors vary some synthesis parameters to study 

their influence on the nanoparticle morphology. Singh and co-workers [20] fabricated 

nanocomposite films based on hydrothermally prepared hematite (α-Fe2O3) NPs and 

chitosan using glycolic acid as organic surfactant. According to the authors, the obtained 

NPs had an irregular spheroidal shape with a mean diameter of 110 nm. The coating of 

magnetic particles has been extensively used to control or tune their agglomeration and to 

assist the size control of particles due to cross-linking among NPs with chitosan, fact 

extremely important in order to achieve the desired physical or chemical behavior. A good 

example of this is the work published by Bhatt et al. [21], where iron oxide NPs were 

synthesized separately (via the hydrothermal process) and then dispersed into the chitosan 

solution by ultrasonication, resulting in materials with new electrical and magnetic 

properties.

However, and depending on the application envisaged for the magnetic 

nanocomposite, the formation of clusters from individual nanoparticles could present some 

advantages in comparison with systems containing more homogeneously dispersed 

magnetic nanoparticles. The magnetic response of the clusters is different than that of the 

individual particles. When the particles are close enough, the magnetic moment of each 

particle will be affected by those of the neighbor ones due to magnetic dipolar interactions. 

Thus, the magnetic moment of an agglomerate of magnetic nanoparticles will be different 

from the individual magnetic moment of each nanoparticle [22]. However, results 

regarding the most efficient nanoparticles configuration (agglomerated or totally 

dispersed) are still controversial. While it is expected that fully dispersed nanoparticles 

should be the best nanoparticle configuration, several reports show that inter-particle 
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dipole interactions in clusters can contribute positively to magnetic hyperthermia or 

magnetic heating properties [23].

On the other hand, the method of preparation not only changes the dispersion and 

size of the particles and/or clusters into the matrix. Different methods of synthesis lead to 

different degrees of interaction of the particles with the matrix and the amount of 

plasticizer that can be retained into the film. The synthesis of magnetic particles and 

posterior incorporation into the chitosan solution could lead to a weaker interaction 

between matrix and particles/clusters than the "in situ" synthesis [24] and in this way; the 

magnetic entities would be freer to react in the presence of an external magnetic field. In 

addition, this last method allows a better control of the amount of plasticizer required in 

the films that can significantly affect some specific properties (for example, mechanical 

properties) in comparison with that of the nanocomposite films prepared by the “in situ” 

method.

In a previous work, we reported the obtaining of chitosan/MNP nanocomposite 

films via “in situ” synthesis of magnetite [25]; both mechanical and magnetic properties, 

were discussed and explained in terms of the matrix composition and nanoparticle 

concentration. In this work, magnetic iron oxides NPs were incorporated to a chitosan 

solution and dispersed by ultrasonication to obtain magnetic nanocomposite films. NPs 

were obtained by a simple iron oxide alkaline precipitation method, followed by washings 

and solvent elimination via lyophilization. The effects of the glycerol (plasticizer) and 

magnetic nanoparticles concentration on the physical, morphological, mechanical and 

magnetic properties of the films is presented and discussed. Besides, the information about 

these nanostructured materials was complemented by SAXS analysis by means of fitting 

experimental results with appropriate models.



6

2 EXPERIMENTAL PROCEDURES

2.1 Materials

Chitosan in powder form (degree of deacetylation 98%, Mv = 1.61 × 105 g/mol) was 

supplied by Parafarm. Glycerol (G), purchased from DEM Mar del Plata, was used as 

plasticizer. Ferric chloride hexahydrate (FeCl3.6H2O), ferrous sulphate heptahydrate 

(FeSO4.7H2O) and ammonium hydroxide (25% NH3) were obtained from Aldrich. All the 

samples were prepared using commercially available reagents.

2.2 Methods

2.2.1 Synthesis of magnetic iron oxides nanoparticles

The iron oxide NPs were obtained by an alkaline co-precipitation method adapted 

from that developed by Massart and Cabuil [26]. In brief, 4.8 g of FeSO4.7H20 and 9.32 g 

of FeCl3.6H2O (molar ratio Fe+2:Fe+3=1:2) were dissolved in approximately 40 mL of 

distilled water. Once the solution was perfectly homogenized, 15 mL of NH4OH was added 

drop by drop in order to avoid or minimize the MNPs aggregation. The suspension was 

stirred for 15 minutes, allowing the complete precipitation of MNPs. After this time and 

with the help of a magnet placed out of the flask, several washes with distilled water were 

made until neutral pH. Then, the wet particles were placed into a Petri plate and lyophilized 

to eliminate the water. Finally, the obtained powder was kept into a dark colored glass 

container.

2.2.2 Preparation of composite films

Chitosan solution (2 % w/v) was prepared by dissolving chitosan powder in aqueous 

acetic acid solution (1% v/v) by magnetic stirring at room temperature. Glycerol, in a 
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weight ratio glycerol/chitosan equal 0.3, was also added to the solution when applicable. 

Selected amounts of MNPs were incorporated to the polymer solution to prepare 

nanocomposite films. Film forming suspensions were obtained by manually mixing MNPs 

with chitosan (or chitosan/glycerol) solution, followed by ultrasonication for 2 hours 

(Elmasonic P60H sonicator with a frecuency of 37 kHz and a power of 150 W). As it is 

know that ultrasonication can cause some degradation of the bio polymer, neat chitosan and 

chitosan/glycerol solutions, used to prepare control films (0% MNPs) were also sonicated. 

Then, the suspensions were poured into Petri dishes (diameter = 14 cm) and dried in a 

convective oven at 35°C for 24 hours (solvent casting). The actual MNP content of the 

films was determined by thermogravimetric analysis, as indicated in the following sections.

The obtained films, with thickness in the range of 200-300 m, were kept in a 

closed container containing dried silica gel at room temperature (23 ± 2°C) until testing. 

Non-plasticized film samples were labeled as S0, S1, S2, S3, S4, S5, while a "G" was 

added at the end of the acronym for plasticized samples (i.e. S0G, S1G, S2G, S3G, S4G 

and S5G).

2.2.3 Characterization of MNPs and composite films

Film thickness: The thickness of the films was measured with a 0–25 mm manual 

micrometer with an accuracy of ± 0.01 mm at least at five random locations for each film. 

The reported values are the average of those individual measurements. 

X-ray diffraction (DRX): The crystal structure of the MNPs was investigated using CuKα 

radiation (λ=1.5418 A) in a PANalytical X'Pert Pro diffractometer operated at 40 kV, 300 

mA and 0.6 °C/min. 
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Transmission Electron Microscopy (TEM): TEM analysis of the MNPs was performed on 

a TEM-FEG (JEM 2100F) field-emission gun transmission electron microscope (voltage: 

200 kV). The images were acquired using a Gatan, Orius SC600/831 camera at different 

resolutions. The particles were dispersed in Milli-Q water and sonicated during 15 minutes. 

The samples for microscopy observation were prepared by drying a drop of this suspension 

during 24 hours at room temperature on a Ted Pella ultrathin cooper film on a holey 

carbon. The obtained images were analyzed using ImageJ free software.

Small-angle X-ray Scattering (SAXS): SAXS experiments were performed on SAXS1 

beamline at the Brazilian Synchrotron Light Laboratory (LNLS), Centro Nacional de 

Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil. The measurements were 

carried out at room temperature. The scattering intensity was recorded as function of 

momentum transfer vector q (q = 4π sinθ/λ), in a range from 0.1 to 5.0 nm-1, being θ the 

scattering angle and λ the wavelength = 1.822 Å. 

Thermogravimetric analysis (TGA): Thermogravimetric tests of the films were performed 

in a TGA-40 Shimadzu Thermogravimetric Analyzer at a heating rate of 10 °C/min under 

air atmosphere (35 mL/min) from room temperature to 900°C. Samples tested were 

previously dried in a vacuum oven during 2 hours at 60°C followed by 22 hours at 40°C, to 

remove traces of water absorbed during storage.

Field Emission Scanning Electron Microscopy (FE-SEM): The cryofractured surface 

(thickness) of the films were analyzed with a Carl Zeiss Supra 40 Gemini, Field Emission 

Scanning Electron Microscope (FE-SEM) equipped with an energy dispersive X-ray 

spectroscopy (EDS) attachment for elemental analysis. 

Tensile properties: Tensile tests were performed at room temperature (23 ± 2º C) using an 

Instron Universal Testing Machine model 8501. The specimens were cut into strips of 5 x 
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25 mm. Five specimens from each film were tested from a minimum of three films per 

sample. Crosshead speed was set at 10 mm/min. The ultimate strength (σu), elongation at 

break (εb) and elastic modulus (E) were calculated as described in ASTM D638-94b 

(ASTM, 1994). Prior to running mechanical tests, films were conditioned for 72 hours at 65 

± 5% relative humidity at room temperature.

Magnetic characterization: The magnetic properties of the composite film were obtained 

using a commercial SQUID magnetometer (Quantum Design, MPMS XL). Both isothermal 

magnetization curves (M vs. H) as well as the temperature dependence of magnetization (M 

vs. T) were obtained. The M vs. H curves were recorded at 2 and 300 K in a magnetic field 

range of ± 1T. The M vs. T curves were recorded under the zero-field-cooling and field-

cooling (ZFC/FC) protocols with a static magnetic field of 50 Oe. Samples used for these 

tests were previously conditioned in a closed container with silica gel until they reached 

their equilibrium moisture content (about 5–7 wt.%).

3 RESULTS AND DISCUSSION

3.1. Structural studies of the magnetic particles

Figure 1 shows representative transmission electron micrographs of the synthesized 

iron oxide NPs; the inset of Figure 1(a) shows the size distribution obtained by counting 

more than one hundred particles. From the analysis of the histogram, an average particle 

diameter of 9.5 ± 2 nm with a narrow size distribution was calculated (full line represents 

the best fit according to a lognormal size distribution). 

Figure 1(a-b) reveals a moderate agglomeration of the particles, as can be expected 

for a set of magnetic NPs without surface treatments/surfactant [27]. It is also noticed that 

not all the particles have a spherical shape, some of them presenting shape irregularities. 
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Figure 1(c) shows a HR-TEM image of a selected nanoparticle. Fast Fourier Transform 

(FFT) was used to estimate the Bragg plane distances on the HR-TEM image allowing to 

identify the (113) and (044) crystallographic planes corresponding to the magnetite (Fe3O4) 

and/or maghemite (Fe2O3) spinel-inverse [28].

e3

Figure 1.(a)–(b) Transmission electron microscopy at different magnifications (right corner 

inset of figure 1a), size distribution of these MNPs), (c) HR-TEM of selected MNP, (d) 

FFT of the HR-TEM on figure (c). 
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X-ray diffraction pattern of the synthesized particles was also analyzed (Figure S1, 

supplementary information). The positions and relative intensities of the diffraction peaks 

agree with those of a pure face-centered cubic (fcc) spinel-inverse iron oxide phase 

corresponding to the standard crystal of magnetite and/or maghemite [29–31]. The crystal 

size (D) was determined using Scherrer’s equation [32–34], from which a value of D = 9.5 

nm was obtained.

Despite that “crystallite size” is not necessarily synonymous of “particle size”, this 

method gives an estimation of the diameter of the magnetic particles [27]. Notice that the 

obtained value is close to those determined from TEM images.

Small-angle X-ray scattering (SAXS) technique was used to analyze the 

morphological features of magnetic NPs before they are loaded into the chitosan matrices. 

Figure S2a in supplementary information presents the SAXS scattering patterns obtained 

from the synthesized NPs. According to the range of q parameter selected for the 

measurement, the NPs that could be characterized have sizes ranging between π/qmax=1 nm 

to π/qmin = 30 nm. From linear Guinier law at low q region (Figure S2b, supplementary 

information) the radius of gyration, Rg, was calculated as 6 nm [35,36].

Then, if the NPs are mostly spherical, an average diameter, Dg, of 15.4 nm was 

estimated indicating that possibly small aggregation of primary particles occurs when they 

are in a colloidal suspension. The scattering intensity in the Porod region presents a slope 

close to -4, which corresponds to individual particles with smooth surfaces [36,37].
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3.2. Characterization of the nanocomposites films 

Thermogravimetric measurements were carried out in air atmosphere in order to 

determine the content of MNPs effectively incorporated into the films and to study the 

thermal degradation of the nanocomposites. From the residual mass left at 800°C, the iron 

oxide content was obtained considering that the residual char corresponds to chitosan (or 

chitosan + glycerol) and ferric oxide, since oxidation process of magnetite into ferric oxide 

due to heating occurs in the range of 130-330°C, as was reported elsewhere [38,39]. The 

residual mass, corresponding to the matrix, was subtracted proportionally from the residual 

char of the composite samples and the difference was converted to magnetite mass. These 

calculations are listed in Table 1, as actual magnetite content. It should be mentioned that 

during the preparation process not all the MNP could be successfully loaded in the film 

forming solutions (i.e. forming a stable colloidal suspension), thus part of the magnetic 

solute remained at the bottom of the flask where the suspension was prepared, not being 

transferred to the Petri dish (mold).

Figure 2 presents the TGA curves for selected composite films prepared from neat 

and plasticized chitosan (S0, S3, S5, S0G, S3G, S5G). Both matrices (films without MNP) 

exhibit three main stages of weight loss. The first one is attributed to loss of absorbed water 

due to the hydrophilic character of the chitosan and, in the case of the plasticized sample, 

also to the loss of the free glycerol. For this reason, the loss of weight of the plasticized 

samples at relatively low temperature is larger than the corresponding to neat chitosan 

films. The second step of weight loss, with maximum degradation rate at around 270°C 

corresponds to the chemical degradation and deacetylation of chitosan [40]. The last step 

observed between ~480 and 630°C corresponds to the oxidative degradation of the 

carbonaceous residue, which is formed during the second step [16].
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Table 1 presents the temperature at the maximum degradation rate and the initial 

decomposition temperature of the last degradation step. It is clear that the plasticizer 

produces a movement of the third step to higher temperatures. Higher thermal stability with 

the presence of glycerol in films of chitosan was also reported in the works of Debandi and 

co-workers (2016) [41] and Fundo et al (2015) [42]. In the last case, authors reported that 

plasticizer addition increased the melting enthalpy, i.e., increases the samples crystallinity, 

and attributed this effect to glycerol interaction with chitosan chains indicating that the H-

bonds stabilize chitosan crystals. They also noticed that the main peak shifted to higher 

melting temperatures when increasing plasticizer concentration, which correlated well with 

other published results [43] and may be also related with an increase of the strength of the 

H-bonds stabilizing chitosan crystals in the presence of plasticizer, as indicated by 

Okuyama et al (1997) [44]. Thus, although part of the glycerol is lost in the first stage of 

degradation, as was mentioned above, a high percentage remain retained in the polymer 

structure because of these strong intermolecular interactions developed with chitosan. As a 

consequence, plasticized samples are not only more crystalline than unplasticized films, but 

also contain more stable crystals that start to degrade at higher temperature. Moreover, due 

to the different initial structures of plasticized and non plasticized films, there should be 

diffusive changes in the volatile products and pyrolysis wastes generated in the second step 

of degradation that also could affect the degradation pattern of the last step.

Regarding magnetic composite films, it can be observed that the addition of MNP only 

slightly affects the degradation at the first and second steps. However, the temperatures 

related with the third step (temperature at the maximum degradation rate and the initial 

decomposition temperature) decrease significantly as the iron oxide content increases 

(Table 1). This effect was also noticed in other related works, for example, in our previous 
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work we associated it with the changes in the conformation of the chitosan surrounding the 

particles in comparison with the chitosan in bulk [25]. Soto et al (2018) [45] also reported a 

decreased thermal stability, in comparison with that of the neat polymeric matrix, in their 

nanocomposite films based on a commercial shape memory polyurethane and different 

contents of magnetic iron oxides, which was associated to the increase in the thermal 

conductivity and thermal diffusivity of the material due to the addition of MNP. 

Additionally, Bertolino et al (2018) [46] found that their nanocomposites based on chitosan 

and halloysite nanotubes, also prepared by casting, did not present any thermal stabilization 

effect due to the presence of particles. They related this fact to the adsorption of positive 

biopolymer on the halloysite external surface, also with positive charge. In our case it 

should be noticed that chitosan - MNP suspensions were prepared in acetic acid solutions 

(i.e. acidic pH) and in this condition both, chitosan and Fe3O4 nanoparticles, are also 

positively charged (i.e. the isoelectric point of the MNP is around 6.85 as reported in Xu et 

al (2006) [47], Regazzoni et al (1981) [14] and Kloster et al (2017) [48]). Moreover, 

Moeini et al (2018) [49] indicated for chitosan based microbeads cross-linked by using 

sodium tripolyphosphate (TPP) that some domains in which the electrostatic repulsion 

prevailed could trigger a less packed structure more prone to the thermal degradation, 

which match exactly the present case. In this sense, these changes in the macromolecular 

backbone structure of the polymer would induce the weakening of the attractive intra-inter-

molecular hydrogen bonds and thus, chitosan macromolecular chains would result more 

exposed to the random splitting of the glycosidic bonds that takes place during the thermal 

degradation process. Additionally, Ziegler-Borowska et al (2016) [50]indicated that a slight 

decrease in the initial decomposition temperature of the magnetite-modified chitosan 

nanocomposite particles, in comparison with the respective chitosan derivatives (including 
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unmodified chitosan), was observed in all cases and attributed to the presence of Fe3O4. 

They concluded that magnetite exhibited a catalytic action on the thermal degradation of 

chitosan and its derivatives, but did not outline any explanation for this behavior. 

Moreover, in a previous publication (Ziegler-Borowska et al, 2015) [51] they emphasized 

that magnetite NPs enhances thermo-oxidative degradation of polymers. In brief, we 

believe that the decreased thermal stability of the nanocomposites, in comparison to those 

of the corresponding neat matrices, is due to several complex and interrelated factors.

Table 1. Actual content of MNP of the films, initial temperature (Ti) and temperature at 

maximum degradation rate (Tm) of the 3rd thermal degradation step. All data were obtained 

from TGA analysis in air atmosphere.

Sample
MNPs actual content 

(wt.%)

Ti (3rd step)

(°C)

Tm (3rd step)

 (°C)

S0 0.00 532.0 ± 16.9 574.0 ± 22.6

S1 1.2 ± 0.2 481.5 ± 17.7 510.0 ± 14.1

S2 2.2 ± 0.3 467.5 ± 2.1 489.0 ± 1.4

S3 3.0 ± 0.5 437.5 ± 2.1 459.0 ± 1.4

S4 3.7 ± 0.2 409.7 ± 8.0 436.3 ± 14.6

S5 5.8 ± 0.4 398.0 ± 7.2 416.3 ± 4.0

S0G 0.00 552.0 ± 22.6 589.5 ± 19.0

S1G 1.3 ± 0.0 509.0 ± 5.6 531.0 ± 2.8

S2G 1.6 ± 0.3 489.0 ± 7.1 510.0 ± 18.3

S3G 3.0 ± 0.4 517.5 ± 0.7 528.0 ± 8.4
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S4G 3.6 ± 0.4 452.5 ± 3.5 469.0 ±11.3

S5G 4.7 ± 0.3 408.0 ± 8.4 430.5 ± 0.7

Figure 2. TGA curves of nanocomposite films: (a) non-plasticized; (b) containing 30 wt.% 

glycerol.

The direct observation of the non-plasticized and plasticized films (images not 

shown) denotes that the samples become darker with the increase of the content of iron 

oxides, due to the strong coloration of the added magnetic particles. However, 

inhomogeneous color was detected, indicating the existence of zones with more 

concentration of magnetic solute. In comparison to other methods, the synthesis protocol 

used in this work to incorporate MNP into the matrices (synthesis of MNP and posterior 

dispersion by sonication in the film forming solution), seems to promote the cluster 

formation, resulting in lesser homogeneous films, when they are compared to those 

synthesized using"in situ" procedures [25,52].
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FESEM analysis was performed to characterize the morphology of the composites. 

Figure 3 shows images from the cross section of plasticized and non-plasticized films 

obtained by fragile fracture under liquid air. Different sizes of structures related to iron 

oxide particles can be observed, ranging from small agglomerates to relatively large 

clusters formed by collapsed individual particles. As expected, the images show a clear 

increase in density of white particles (associated to dispersed magnetic entities) as the 

content of particles increases. On the other hand, although the images presented in Figure 3 

seem to denote bigger structures for the plasticized films, the technique did not allow 

determining an unequivocal trend regarding the size of agglomerates.

Figure 3. FESEM micrographs of the nanocomposites for three selected films.
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Tensile properties of the films are summarized in Table 2. Both, modulus and 

strength of the non-plasticized films increase with the increment of MNP content. As an 

example, the addition of MNP into non-plasticized matrix in the sample S5 generates a 

52.8% of increase in the modulus and 37% in the ultimate stress respect to the neat matrix. 

The increase of modulus is related with the high rigidity of the MNP in comparison with 

that of the polymeric matrix and can be expected if the particles or their clusters are 

homogeneously distributed and no pores or bubbles are generated during drying of the 

composite. On the other hand, the increase in ultimate stress of nanocomposites in 

comparison with that of the neat matrix is expected only when the filler acts as 

reinforcement, which normally takes place for fillers highly compatible and/or interacting 

with the polymeric matrix [53,54]. Anyhow, the standard deviation of both measurements 

is high for some of the samples and thus probably the unique significant difference can be 

found by comparing S5 composite with the neat matrix.

Table 2. Tensile properties of the films. 

Sample E (MPa) u (MPa) b (%)

S0 1098 ± 337b 22.7 ± 7.6a 14.8 ± 11.6a

S1 1215 ± 328b 25.8 ± 6.4a 17.5 ± 11.6a

S2 1025 ± 509b 27.5 ± 6.1a 11.6 ± 5.3a

S3 1229 ± 46b 27.9 ± 3.3a 11.9 ± 6.1a

S4 1482 ± 401ab 30.4 ± 9.4a 14.1 ± 7.3a

S5 1677 ± 108a 31.1 ± 4.3a 11.3 ± 6.3a
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S0G 69 ±14c 7.5 ± 1.9bc 15.5 ± 5.1a

S1G 73 ± 14c 5.2 ± 0.8c 8.6 ± 2.4a

S2G 79 ± 16c 5.6 ± 1.6bc 8.6 ± 2.9a

S3G 77 ± 15c 8.3 ± 2.1b 12.1 ± 2.3a

S4G 60 ± 14c 7.1 ± 1.5bc 14.3 ± 0.9a

S5G 79 ± 22c 7.7 ± 3.3bc 12.5 ± 6.5a

a,b,c Different letters in the same column indicate significant differences (p < 0.05). 
Reported values correspond to the mean ± standard deviation.

Pukanszky and co-workers [55] assumed that the yield stress of a filled polymer is 

determined by the decrease of the effective load bearing cross section of the matrix due to 

filler and by the polymer-filler interaction. They proposed the following equation to relate 

the strength of the particulate composite with the volume fraction of filler:

 (1)𝜎𝑓𝑖𝑙𝑚 = 𝜎𝑚𝑎𝑡𝑟𝑖𝑥( 1 ‒ 𝑉𝑀𝑁𝑃

1 + 2.5 ∙ 𝑉𝑀𝑁𝑃) ∙ 𝑒𝑥𝑝(𝐵 ∙ 𝑉𝑀𝑁𝑃)

where σfilm and σmatrix are the ultimate stresses of the nanocomposite film and the unfilled 

matrix, respectively, VMNP is the volume fraction of the magnetic solute into the film (MNP 

in this case) and B is a parameter related with the specific area and density of the filler as 

well as the thickness and strength of the interface characterizing the interfacial interaction 

filler-matrix, which serve also as a measurement of the reinforcement efficiency of the filler 

[40].

If B = 0 the filler acts as a void and no adhesion and no stress transfer take place at 

the filler-matrix interface. For B > 3 the filler-matrix interface is good, and an effective 

reinforcing effect is obtained.
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The volume fraction of MNP (VMNP) can be calculated, assuming additivity of the 

volumes () as follow:

 (2)𝑉𝑀𝑁𝑃 =
𝜈𝑀𝑁𝑃

𝜈𝑓𝑖𝑙𝑚
=

𝑊𝑀𝑁𝑃
𝜌𝑀𝑁𝑃

𝑊𝑀𝑁𝑃
𝜌𝑀𝑁𝑃

+
𝑊𝑚𝑎𝑡𝑟𝑖𝑥
𝜌𝑚𝑎𝑡𝑟𝑖𝑥

 

The density of the unfilled matrix (matrix=1.3 g/cm3) was experimentally 

determined as the ratio between the weight and volume of a rectangular specimen, and the 

density of the filler (MNP) was taken as 5.175 g/cm3 [56].
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Figure 4. Experimental (symbols) strength and theoretical (dash line) values calculated 

from the Pukanszky model as a function of MNP volume fraction.

Figure 4 shows the evolution of the ultimate stress as function of volume fraction of 

MNP for non-plasticized films. In the same figure, the calculated fitting curve (equation 1) 

is displayed. According to the fit results, a value of 26 was found for the B parameter, being 

this much larger than 3, meaning that the interface is strong and an effective reinforcing 

effect was obtained [57].

On the other hand, the strong plasticizing effect of the glycerol is clearly denoted by 

the important decrease of the rigidity of plasticized samples with respect to non-plasticized 

ones, resulting in lower modulus and strength values (Table 2). However, these properties 

do not present a clear trend with MNP concentration. Particle agglomeration could affect 

the effective stiffness of the particles and the load transfer at the matrix-particle interface, 

facts related with modulus and strength of the nanocomposites, respectively. This behavior 

could be attributed to the heterogeneity of the films regarding MNP concentration and 

probably associated with less compatibility between particles and plasticized matrix than 

the observed for the non-plasticized samples. This fact could be directly associated to the 

presence of higher agglomerates in the nanocomposites with glycerol as was previously 

mentioned in the analysis of FESEM images.

The ultimate deformation does not present a clear trend, neither with respect to 

magnetite concentration, nor with respect to glycerol content (i.e. comparing S samples 

with SG samples at fixed magnetite concentration).

From FESEM images analysis, it became clear that composite samples contain 

aggregates of individual particles. Thus, the SAXS technique was used to complement the 
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structural information, as well as to follow the cluster formation into the chitosan based 

films. The range of analysis of the SAXS measurements is restricted with respect to the size 

of particles or structures loaded into the matrix (i.e. depends on the selected q range). Here 

some general information about nanostructures will be obtained and used as a comparative 

tool. Firstly it should be noticed that even when the FESEM images suggest the presence of 

at least a bimodal distribution of cluster sizes, the measured q-range in SAXS covers those 

scattering objects matching the smaller ones. 

Figure 5 shows the Log–Log representation of scattering intensity, I(q) versus the 

momentum transfer, q, for the magnetic nanocomposites. As can be noted, the SAXS 

experimental curves display similar trends, where three different scattering regions can be 

highlighted. In low-q region, all spectra exhibit similar power law trends, indicating a 

deviation from the Guinier behavior, characteristic of non-interacting individual particles 

(i.e. ultra-dispersed systems). This deviation can be attributed to the scattering interference 

between the neighboring iron oxide NPs, denoting their aggregation into the films [58,59]. 

In this zone (Guinier region), for q–values lower than 0.1 nm-1, a power law of I ~ q-2.4 was 

found for all samples. In the high-q region, the scattering intensity behavior can be 

described with a power law I(q) ~ q-, being  the Porod exponent, whose values were 

found between -3 and -4 for all samples, characteristic of Porod scattering from smooth and 

sharp interfaces among iron oxide NPs and polymer matrix [60–62]. At intermediate q-

values (0.2 nm-1< q < 0.95 nm-1), the absence of oscillations suggests a moderate 

polydispersity of the MNP loaded into the chitosan matrices.
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Figure 5. Small angle X-ray scattering intensity (I) as a function of the momentum transfer 

vector (q) for non-plasticized (a) and plasticized samples (b).

To perform a quantitative analysis, experimental SAXS curves were evaluated using 

the unified exponential/power-law postulated by Beaucage and based on hierarchical 

structures [63]. The phenomenology behind this model implies to consider a combination 

of the Porod and Guinier regimes to describe the scattering intensity of any systems 

composed by entities of complex morphology, which can contain multiple levels of related 

structural features. In our case, to describe two interconnected structural levels (aggregates 

and individual NPs), the following equation was used:

 (3)𝐼(𝑞)≅𝐺 𝑒𝑥𝑝
( ‒ 𝑞2𝑅𝑔

2)
3 + 𝐵 𝑒𝑥𝑝

( ‒ 𝑞2𝑅𝑠
2)

3 ((erf (𝑞𝑅𝑔/ 6)3

𝑞 )
𝐷𝑓

+ 𝐺𝑠 𝑒𝑥𝑝
( ‒ 𝑞2𝑅𝑠

2)
3 + 𝐵𝑠((erf (𝑞𝑅𝑠/ 6)3

𝑞 )
𝑃

where G and B correspond to the Guinier and Porod pre-factors of those larger structures 

detected in the measured q range (aggregates); Gs and Bs are the Guinier and Porod pre-
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factors of the smaller structures (individual particles); Rg is the radius of gyration of 

aggregates with fractal dimension Df, and whose architecture is defined by small particles 

of size Rs. P is the exponent of the power law assigned to the smaller structures and erf is 

the error function. Notice that the first term of equation 3 describes the large-scale structure 

of size Rg, while the second one refers to the mass-fractal regime with two structural limits. 

The last two terms are related with the structural information of smaller substructure 

(primary MNPs). 

The Beaucage approach was successfully applied to describe the scattering intensity 

from those polydispersed NPs that interact forming clusters of larger sizes into the selected 

matrices. The curves obtained by fitting the model are in good agreement with experimental 

data, as can be observed in Figure 6 for the samples S1, S5, S1G and S5G. The individual 

contributions of the Guinier and Porod component curves of aggregates (curves 1 and 2) 

and primary particles (curves 3 and 4) are also included in the plot (dashed lines). 

Thus, equation 3 allows modeling the experimental SAXS results and determining 

the fitting parameters, such as Rg, Df and the pre-factors, G, B, Gs and Bs for different 

chitosan/MNP films (Table 4). The P exponent and the single nanoparticle radius (Rs) were 

set as 4 and 4.8 nm (this last one, according to TEM information), respectively, although a 

relative small variation of ±10% was allowed for fitting purposes.

Fitting parameters G, B, Gs and Bs (see Table 4) increase with MNP content for 

both, plasticized and non-plasticized samples as was expected, because they are directly 

related with the relative amount of iron oxide NPs (Gs and Bs) and agglomerates (G and B). 

As the amount of individual particles rises, an increase in the amount of agglomerates is 

expected. In addition, the pre-factors are higher for the non-plasticized samples with the 

most important differences in G and B parameters, fact that could be related with 
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differences in the electronic contrast between the matrix and particles, when the former is 

plasticized or not: the presence of glycerol can modify the dispersion length densities of the 

matrix and consequently the electronic contrast of particular zones of the composite. 

Table 4 also presents the polydispersity index, PDI, and the grade of aggregation, Z 

(defined as the amount of particles of mean radius Rs contained by an aggregate of radius 

Rg) calculated by the following equations [64].

 (4)𝑃𝐷𝐼 =
𝐵𝑠 ∙ 𝑅𝑠

4

1.62 ∙ 𝐺𝑠

       (5)𝑍 = (𝑅𝑠

𝑅𝑔)
‒ 𝐷𝑓

2
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Figure 6. Experimental data (empty circles) and fitting of equation 3 with SASfit package 

(solid line) and the different contributions of Beaucage model. 1) Guinier aggregates, 2) 

Porod aggregates, 3) Guinier individual particles, 4) Porod individual particles. 
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Since Df is a parameter of the fractal dimension, their values, quite similar for all 

films, indicate that in all the samples the agglomerates of individual particles have similar 

structures. Their values are mostly close to 3, indicating tridimensional smooth and 

compact clusters [65] with a tridimensional architecture. On the other hand, Rg, which 

stands for the aggregate sizes, does not suffer significant variation with the concentration of 

MNP. Assuming that the shape of the agglomerates is spherical, their sizes can be 

calculated using ξ =2(5/3)1/2Rg. 

Table 4. SAXS parameters obtained using equations 3-5. 

G: Guinier pre-factor of larger structures, B: Porod pre-factor of larger structures, Gs: 
Guinier pre-factor of smaller structures, Bs: Porod pre-factor of the smaller structures, Rg: 
radius of gyration of aggregates, Df: fractal dimension, Rs: radius of individual particles, 

P: exponent of the power law assigned to the smaller structures, ξ: radius of the 
agglomerate, PDI: polydispersity index, Z: grade of aggregation.

Sample G B Gs Bs Rg

(nm)

Rs

(nm)

Df P ξ

(nm)

PDI Z

S1 5.03E7 1.22E6 4.47E7 8.88E5 21.92 4.792 2.99 4.01 55.56 6.3 19.1

S2 2.24E7 2.95E6 1.20E8 2.38E6 21.51 4.757 2.98 3.82 55.55 6.3 17.8

S3 1.69E7 3.79E6 1.55E8 2.95E6 21.79 4.770 2.92 3.99 56.26 6.1 20.8

S4 6.89E8 2.10E7 3.37E8 5.62E6 21.17 4.795 2.46 3.98 54.65 5.5 19.1

S5 4.95E9 1.16E7 3.87E8 8.60E6 21.04 4.776 2.99 3.72 51.43 6.1 13.8

S1G 3.77E6 2.84E6 5.87E7 1.05E6 21.317 4.795 2.61 3.98 55.04 5.8 19.5

S2G 2.70E8 3.43E6 1.34E8 2.53E6 21.11 4.795 2.88 3.98 54.51 6.2 19.1

S3G 2.80E8 3.38E6 1.40E8 2.89E6 21.38 4.794 3.04 3.98 55.20 6.7 19.5

S4G 5.31E8 6.23E6 2.65E8 5.55E6 21.16 4.793 3.04 3.97 54.63 6.8 19.0
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Figure 7 shows a general overview of the DC magnetic properties in the 

investigated nanocomposite films. The temperature dependende of magnetization for 

different samples is displayed in Figures 7 (a) and (d); these curves were recorded at a low 

DC field of 50 Oe under the zero-field-cooling and field-cooling protocols. As can be 

noted, all the ZFC/FC curves show a similar behavior, where the ZFC magnetization curves 

progressively increases without a defined maximum in the range of analyzed temperatures, 

while, the FC curves show a monotonous decrease as temperature rises. Moreover, ZFC 

and FC joint near to 300 K, which indicates that both blocking and irreversibility 

temperatures are probably close to room temperature. These are characteristics for highly or 

moderate interacting nanoparticulated systems, with a broad size distribution and where not 

all the NPs become unblocked at 300 K [66].

S5G 6.08E8 7.82E6 3.45E8 7.26E6 21.30 4.792 3.06 3.97 55.00 6.8 19.3
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Figure 7. (a) and (d) Magnetization as a function of the temperature recorded under ZFC 

and FC protocols for samples S and SG, respectively. ZFC and FC curves are normalized 

and vertically displaced for better understanding. (b) and (c) Magnetization vs. magnetic 

field curves at 300 and 2 K for samples S. (e) and (f) Magnetization vs. magnetic field 

curves at 300 and 2 K for samples SG. Continuous lines at M vs.H recorded at 300 K 

represent the Langevin fits. Magnetization values are presented in emu/g of magnetic 

material.

Isothermal hysteresis loops were measured in all nanocomposites at two different 

temperatures (2 K and 300 K). According to our results, every M vs. H curve obtained at 
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300 K (Figures 7(b) and (e)) displays a S-shape with an almost null coercive field (Hc) i.e., 

absence of hysteresis. This is a typical feature of granular systems composed by 

monodomain NPs, as explained by Allia et al [67] and Knobel et al [68]. Besides, the 

magnetization values obtained at 2K are larger than the ones measured at 300K. Despite 

that the magnetization curves of both systems (plasticized and not plasticized) share some 

similarities, there are differences in the magnetization saturation (Ms) values. For instance, 

comparing the M vs. H curves measured at 300K, those films loaded with lowest NP 

concentrations, i.e., S1 and SG1, take values of Ms around ~21 emu/g and 18 emu/g 

(normalized per MNP mass), respectively. On the other hand, in samples S5 and SG5 

(nanocomposites films with highest NP concentration), the Ms have values of 27 and 35 

emu/g, respectively. Thus, for both sets of analyzed magnetic nanocomposite films one can 

distinguish an increase of MS as the concentration of magnetic solute rises from samples 1 

to 5.

This behavior seems to be dependant on the NPs concentration, where aggregates 

features, such as size and compactness degree, are directly influenced by the amount of 

magnetic solute (as was inferred from SAXS and FESEM analysis). In addition, the 

aggregate formations lead to different collective behaviors among NPs, which should be 

related to cluster features. These facts can reveal the formation of systems with differences 

in dipolar interactions and effective anisotropies, which affect the magnetization dynamics, 

consequently, the corresponding macroscopic parameters (such as MS and/or HC) [69]. It is 

worth noting that all the M vs. H curves display lower values of MS, when compared to 

those reported for bulk magnetite [70]. This behavior can be understood considering the 

disorder on the nanoparticle surface [71]. Comparing the magnetization behavior of the two 

sets of systems, differences between the MS values of samples S and SG for a specific 
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concentration can easily perceived, suggesting different aggregation of the NPs. This effect 

can be affected by the interaction among the functional groups of the matrix and the active 

chemical groups located at the interface of the nanoparticle, as suggested in previous works 

[52,72]. Table 5 listes the coercive field values (Hc) extracted from the M vs. H curves 

obtained at 2K. For both systems (S and SG) it can be noticed that HC tends to higher 

values as the temperature decrease, which is an experimental evidence that the NPs are in 

the blocked regime at 2 K consistent with ZFC and FC results [59,73]. Furthermore, for 

each nanoparticle concentration, lower values of HC can be observed for plasticized 

samples (SG) in comparison to the other ones. This behavior could indicate the formation 

of aggregates with low compactness degree.

In order to perform a quantitative analysis of the above discussed facts, we applied 

the Langevin formulation to fit the M vs. H curves measured at 300 K. Briefly, the 

magnetization response as a function of the magnetic field for granular nanoparticle 

systems can be described by the Langevin function M = MSL(μH/kBT), being μ the 

magnetic moment per monodomain entity, kB the Boltzmann constant and MS the saturation 

magnetization, that also can be expressed as MS = Nμ, N being the number of monodomain 

entities per unit mass. To take into account the moment distribution (related to the presence 

of a particle size distribution), Langevin function was weighted by a lognormal distribution 

function f(μ) with median μM ( ), being σ the standard deviation. Then, the M = 𝜇exp (𝜎2/2)

vs. H data were fitted by:

, (6)𝑀(𝐻) = 𝑁∫∞
0 𝜇𝐿( 𝜇𝐻

𝑘B𝑇)𝑓(𝜇)𝑑𝜇 + 𝐶

where the last term  is a constant that contains the paramagnetic contributions that come 𝐶

from the nanoparticle surface disorder. The fitted curves are displayed as full lines in 
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Figures 7 ((b) and (e)) and the fitted parameters are summarized in Table 5. To interpret the 

fitting results, it must be considered that the framework behind the Langevin formulation is 

based on ideal systems, i.e., non-interacting and monodomain entities with moderate size 

distribution. However, a reinterpretation of the obtained results can support the hypothesis 

that the formation of aggregates with different features (each one acting as a magnetic 

entity) dominates the magnetization response. Accordingly, the obtained parameters, σ and 

N, do not vary widely, while for the two investigated sets of samples, the mean magnetic 

moment per magnetic entity (μM) present an increase as the nanoparticle concentration 

increase; for instance, μM of 11.8 μB and 6.7 μB were obtained for samples S1 and S1G, 

respectively, while for the most concentrated samples (S5 and S5G), values of 12.5 μB and 

14.3 μB were found. The observed variance of μM can be understood from the NP 

arrangement (size and compactness degree) that forms each aggregate.

On samples with lower magnetic solute, it seems that the NPs are randomly 

arranged to give rise to structures of shorter magnetic size. On the contrary, in samples with 

high nanoparticle concentration, it seems that the NPs that form the aggregates are 

organized so that their magnetic moments are forming cooperative magnetic systems, 

leading to more compact structures with a bigger net magnetic moment. Theses hypothesis 

could suggest a cooperative-type arrangement of those magnetic moments that belong to 

the percolated NPs (high nanoparticle concentrations). Such hypothesis also implies that for 

larger NP concentration, the super-paramagnetic features of the system can be lost, which 

result in a magnetic response governed by the aggregates characteristics. 

Table 5. Best fitting parameters according to equation 6 and coercive fields obtained from 

the M vs. H curves recorded at 2K. 
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σ: variance, μM: magnetic moment per magnetic entity, N the number of monodomain 
entities per unit mass, Hc: coercive field

Sample σ μM (103μB) N (1017cm-3) Hc (Oe) at 2 K

S1 0.3 11.8 2.2 280

S2 0.4 11.9 2.1 290

S3 0.6 12.4 2.2 295

S4 0.6 12.6 2.2 298

S5 0.5 12.5 2.2 297

SG1 1.0 6.7 1.5 260

SG2 0.8 10.7 1.6 265

SG3 0.8 11.1 1.6 276

SG4 0.8 13.1 1.4 278

SG5 0.9 14.3 1.6 290

4 CONCLUSIONS 

A procedure to obtain magnetic nanocomposite films using a bio-polymeric matrix 

(chitosan) and magnetic nanoparticles was reported. The nanoparticles of iron oxides were 

synthesized by an alkaline co-precipitation method that leads to the formation of magnetite 

and/or maghemite particles of less than 10 nm average diameter. FESEM micrographs, 

tensile tests, magnetic properties and SAXS analysis were used to evaluate film specific 

properties, but also to obtain indirect information regarding film's nano and microstructure.

The mechanical behavior under uniaxial tensile tests was associated to a good 

interaction nanoparticles-matrix, mainly for the non-plasticized samples where a clear 

reinforcing effect was observed.
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Magnetic results showed that the nanoparticles within the films are super-

paramagnetic, with blocking temperatures close to room temperature. Generally speaking, 

the magnetic response was dominated by the collective behavior of interacting dipolar 

nanoparticles associated with the presence of aggregates with variations in sizes and 

compactness degree. The aggregation of individual magnetic particles in the composite 

films was corroborated from FESEM images, with the larger ones found in the plasticized 

samples. SAXS data were successfully fitted with the Beaucage model and the calculated 

parameters denoted the existence of volume fractal dimensions in the smaller clusters.

In conclusion, these nanocomposites are excellent candidates for a wide range of 

applications, owing to (i) easy access and low cost of raw materials and processing, (ii) the 

low toxicity of chitosan, MNP and the solvent used (water), (iii) the chelating 

characteristics inherent to chitosan and magnetic nanoparticles.
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Structural studies of the magnetic particles

Figure S1 shows the X-ray diffraction pattern of the synthesized particles. The positions 

and relative intensities of the diffraction peaks agree with those of a pure face-centered 

cubic (fcc) spinel-inverse iron oxide phase corresponding to the standard crystal of 

magnetite and/or maghemite [28-31]. The crystal size (D) was determined using Scherrer’s 

equation [32-34] (Eq.1), from which a value of D = 9.5 nm was obtained.  

                                                                                                                  (1)𝐷 =
0.9 ∗ 𝜆

𝛽 ∗ cos 𝜃

where  is the radiation wavelength (Cu K 0.1546 nm),  is the width at half height of the 

selected peak (in this case (311) plane) and  is the Bragg angle. 

Despite that “crystallite size” is not necessarily synonymous of “particle size”, this method 

gives an estimation of the diameter of the magnetic particles [27]. Notice that the obtained 

value is close to those determined from TEM images.
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Figure S1. X-ray diffraction pattern of MNPs.

Small-angle X-ray scattering (SAXS) technique was used to analyze the morphological 

features of magnetite NPs before they are loaded into the chitosan matrices. 

Figure S2a presents the SAXS scattering patterns obtained from the synthesized NPs. 

According to the parameters q-range selected for the measurement, the NPs that could be 

characterized should have sizes ranging between π/qmax=1 nm to π/qmin = 30 nm. From 

linear Guinier law at low q region (Figure S2b) the radius of gyration, Rg, was calculated as 

6 nm, using the following equation [35,36].

I(q)=Gexp(-q2Rg2/3) (2)

Then, if the NPs are mostly spherical, an average diameter, Dg, of 15.4 nm was estimated 

(from Dg=2(5/3)1/2Rg), indicating that possibly small aggregation of primary particles 

occurs when they are in a colloidal suspension during their synthesis. The scattering 
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intensity in the Porod region presents a slope close to -4, which corresponds to individual 

particles with smooth surfaces [36,37]. 
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Figure S2. (a) Log–Log curve of small angle X-ray scattering intensity (I) vs. momentum 

transfer vector (q). (b) Guinier curve (ln I vs q2). Both for iron oxide NPs.


