14,072 research outputs found

    Extragalactic Foreground Contamination in Temperature-based CMB Lens Reconstruction

    Get PDF
    We discuss the effect of unresolved point source contamination on estimates of the CMB lensing potential, from components such as the thermal Sunyaev-Zel'dovich effect, radio point sources, and the Cosmic Infrared Background. We classify the possible trispectra associated with such source populations, and construct estimators for the amplitude and scale-dependence of several of the major trispectra. We show how to propagate analytical models for these source trispectra to biases for lensing. We also construct a "source-hardened" lensing estimator which experiences significantly smaller biases when exposed to unresolved point sources than the standard quadratic lensing estimator. We demonstrate these ideas in practice using the sky simulations of Sehgal et. al., for cosmic-variance limited experiments designed to mimic ACT, SPT, and Planck

    A time-dependent variational principle for dissipative dynamics

    Get PDF
    We extend the time-dependent variational principle to the setting of dissipative dynamics. This provides a locally optimal (in time) approximation to the dynamics of any Lindblad equation within a given variational manifold of mixed states. In contrast to the pure-state setting there is no canonical information geometry for mixed states and this leads to a family of possible trajectories --- one for each information metric. We focus on the case of the operationally motivated family of monotone riemannian metrics and show further, that in the particular case where the variational manifold is given by the set of fermionic gaussian states all of these possible trajectories coincide. We illustrate our results in the case of the Hubbard model subject to spin decoherence.Comment: Published versio

    Colorectal Cancer Through Simulation and Experiment

    Get PDF
    Colorectal cancer has continued to generate a huge amount of research interest over several decades, forming a canonical example of tumourigenesis since its use in Fearon and Vogelstein’s linear model of genetic mutation. Over time, the field has witnessed a transition from solely experimental work to the inclusion of mathematical biology and computer-based modelling. The fusion of these disciplines has the potential to provide valuable insights into oncologic processes, but also presents the challenge of uniting many diverse perspectives. Furthermore, the cancer cell phenotype defined by the ‘Hallmarks of Cancer’ has been extended in recent times and provides an excellent basis for future research. We present a timely summary of the literature relating to colorectal cancer, addressing the traditional experimental findings, summarising the key mathematical and computational approaches, and emphasising the role of the Hallmarks in current and future developments. We conclude with a discussion of interdisciplinary work, outlining areas of experimental interest which would benefit from the insight that mathematical and computational modelling can provide

    Resumption of mass accretion in RS Oph

    Get PDF
    The latest outburst of the recurrent nova RS Oph occurred in 2006 February. Photometric data presented here show evidence of the resumption of optical flickering, indicating re-establishment of accretion by day 241 of the outburst. Magnitude variations of up to 0.32 mag in V band and 0.14 mag in B band on time-scales of 600–7000 s are detected. Over the two-week observational period, we also detect a 0.5 mag decline in the mean brightness, from V≈ 11.4 to 11.9, and record B≈ 12.9 mag. Limits on the mass accretion rate of [inline image] are calculated, which span the range of accretion rates modelled for direct wind accretion and Roche lobe overflow mechanisms. The current accretion rates make it difficult for thermonuclear runaway models to explain the observed recurrence interval, and this implies average accretion rates are typically higher than seen immediately post-outburst

    Self-pulsation at 480 GHz from a two-color discrete mode laser diode

    Get PDF
    A discrete mode Fabry-PĂ©rot laser is designed and fabricated to achieve two-color lasing. We demonstrate beating between the two laser modes and self-pulsation at 480 GHz

    The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    Get PDF
    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation.\ud \ud In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (i) differential interactions between cells and the supporting scaffold and their associated ECM, (ii) scaffold degradation, and (iii) mechanotransduction-regulated cell proliferation and ECM deposition.\ud \ud Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from ÎŒCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo

    Discovery of disc precession in the M31 dipping X-ray binary Bo 158

    Full text link
    We present results from three XMM-Newton observations of the M31 low mass X-ray binary XMMU J004314.4+410726.3 (Bo 158), spaced over 3 days in 2004, July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic intensity dips were previously seen to occur on a 2.78-hr period, due to absorption in material that is raised out of the plane of the accretion disc. The report of these observations stated that the dip depth was anti-correlated with source intensity. However, our new observations do not favour a strict intensity dependance, but rather suggest that the dip variation is due to precession of the accretion disc. This is to be expected in LMXBs with a mass ratio <~ 0.3 (period <~ 4 hr), as the disc reaches the 3:1 resonance with the binary companion, causing elongation and precession of the disc. A smoothed particle hydrodynamics simulation of the disc in this system shows retrograde rotation of a disc warp on a period of ~11 P_orb, and prograde disc precession on a period of ~29 P_orb. This is consistent with the observed variation in the depth of the dips. We find that the dipping behaviour is most likely to be modified by the disc precession, hence we predict that the dipping behaviour repeats on a 81+/-3 hr cycle.Comment: 9 pages, 6 figures, accepted for publication by MNRAS, changed conten
    • 

    corecore