9,203 research outputs found

    Connectedness properties of the set where the iterates of an entire function are unbounded

    Get PDF
    We investigate the connectedness properties of the set I+(f) of points where the iterates of an entire function f are unbounded. In particular, we show that I+(f) is connected whenever iterates of the minimum modulus of f tend to ∞. For a general transcendental entire function f, we show that I+(f)∪ \{\infty\} is always connected and that, if I+(f) is disconnected, then it has uncountably many components, infinitely many of which are unbounded

    The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently

    Full text link
    We study families H_n of 1D quantum spin systems, where n is the number of spins, which have a spectral gap \Delta E between the ground-state and first-excited state energy that scales, asymptotically, as a constant in n. We show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins, where m is an O(1) constant, is locally the same as the ground state |\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to the ground state of H_n can be stored efficiently for all n. We formulate a conjecture that, if true, would imply our result applies to all noncritical 1D spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change

    Approximate locality for quantum systems on graphs

    Full text link
    In this Letter we make progress on a longstanding open problem of Aaronson and Ambainis [Theory of Computing 1, 47 (2005)]: we show that if A is the adjacency matrix of a sufficiently sparse low-dimensional graph then the unitary operator e^{itA} can be approximated by a unitary operator U(t) whose sparsity pattern is exactly that of a low-dimensional graph which gets more dense as |t| increases. Secondly, we show that if U is a sparse unitary operator with a gap \Delta in its spectrum, then there exists an approximate logarithm H of U which is also sparse. The sparsity pattern of H gets more dense as 1/\Delta increases. These two results can be interpreted as a way to convert between local continuous-time and local discrete-time processes. As an example we show that the discrete-time coined quantum walk can be realised as an approximately local continuous-time quantum walk. Finally, we use our construction to provide a definition for a fractional quantum fourier transform.Comment: 5 pages, 2 figures, corrected typ

    Opinion formation models based on game theory

    Get PDF
    A way to simulate the basic interactions between two individuals with different opinions, in the context of strategic game theory, is proposed. Various games are considered, which produce different kinds of opinion formation dynamics. First, by assuming that all individuals (players) are equals, we obtain the bounded confidence model of continuous opinion dynamics proposed by Deffuant et al. In such a model a tolerance threshold is defined, such that individuals with difference in opinion larger than the threshold can not interact. Then, we consider that the individuals have different inclinations to change opinion and different abilities in convincing the others. In this way, we obtain the so-called ``Stubborn individuals and Orators'' (SO) model, a generalization of the Deffuant et al. model, in which the threshold tolerance is different for every couple of individuals. We explore, by numerical simulations, the dynamics of the SO model, and we propose further generalizations that can be implemented.Comment: 18 pages, 4 figure

    Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux Periodicity

    Full text link
    We apply the technique of quasi-adiabatic continuation to study systems with continuous symmetries. We first derive a general form of Goldstone's theorem applicable to gapped nonrelativistic systems with continuous symmetries. We then show that for a fermionic system with a spin gap, it is possible to insert π\pi-flux into a cylinder with only exponentially small change in the energy of the system, a scenario which covers several physically interesting cases such as an s-wave superconductor or a resonating valence bond state.Comment: 19 pages, 2 figures, final version in press at JSTA

    2-Player Nash and Nonsymmetric Bargaining Games: Algorithms and Structural Properties

    Full text link
    The solution to a Nash or a nonsymmetric bargaining game is obtained by maximizing a concave function over a convex set, i.e., it is the solution to a convex program. We show that each 2-player game whose convex program has linear constraints, admits a rational solution and such a solution can be found in polynomial time using only an LP solver. If in addition, the game is succinct, i.e., the coefficients in its convex program are ``small'', then its solution can be found in strongly polynomial time. We also give a non-succinct linear game whose solution can be found in strongly polynomial time

    The Entropy of Dimethyl Acetylene from Low Temperature Calorimetric Measurements. Free Rotation in the Dimethyl Acetylene Molecule

    Get PDF
    The separation of the methyl groups in the dimethyl acetylene molecule, H3C-C≡C-C-CH3, is much greater than it is in ethane, and if the potential barrier [1] of about 3000 cal./mole restricting internal rotation in the latter is due to interactions between the methyl groups, then this barrier should be much smaller in dimethyl acetylene. If, on the other hand, the restricting potential in ethane is largely due to resonance with double bonded structures as proposed by Gorin, Walter, and Eyring [2], that fact that the length of the C-C single bonds in dimethyl acetylene [3] is such as to indicate considerable double bond character might lead one to expect a barrier about as large as in ethane. In order to determine the magnitude of this barrier we have calculated the entropy of dimethyl acetylene from low temperature calorimetric measurements and have compared this experimental value with that computed from molecular data

    Multiplayer Cost Games with Simple Nash Equilibria

    Full text link
    Multiplayer games with selfish agents naturally occur in the design of distributed and embedded systems. As the goals of selfish agents are usually neither equivalent nor antagonistic to each other, such games are non zero-sum games. We study such games and show that a large class of these games, including games where the individual objectives are mean- or discounted-payoff, or quantitative reachability, and show that they do not only have a solution, but a simple solution. We establish the existence of Nash equilibria that are composed of k memoryless strategies for each agent in a setting with k agents, one main and k-1 minor strategies. The main strategy describes what happens when all agents comply, whereas the minor strategies ensure that all other agents immediately start to co-operate against the agent who first deviates from the plan. This simplicity is important, as rational agents are an idealisation. Realistically, agents have to decide on their moves with very limited resources, and complicated strategies that require exponential--or even non-elementary--implementations cannot realistically be implemented. The existence of simple strategies that we prove in this paper therefore holds a promise of implementability.Comment: 23 page

    Propagation of a Solitary Fission Wave

    Get PDF
    Reaction-diffusion phenomena are encountered in an astonishing array of natural systems. Under the right conditions, self stabilizing reaction waves can arise that will propagate at constant velocity. Numerical studies have shown that fission waves of this type are also possible and that they exhibit soliton like properties. Here, we derive the conditions required for a solitary fission wave to propagate at constant velocity. The results place strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist, and this condition would apply to other reaction diffusion phenomena as well. Numerical simulations are used to confirm the results and show that solitary fission waves fall into a bistable class of reaction diffusion phenomena. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729927]United States Nuclear Regulatory Commission NRC-38-08-946Mechanical Engineerin

    Triple-q octupolar ordering in NpO_2

    Full text link
    We report the results of resonant X-ray scattering experiments performed at the Np M_4,5 edges in NpO_2. Below T_0 = 25 K, the development of long-range order of Np electric quadrupoles is revealed by the growth of superlattice Bragg peaks. The electronic transition is not accompanied by any measurable crystallographic distortion, either internal or external, so the symmetry of the system remains cubic. The polarization and azimuthal dependence of the intensity of the resonant peaks is well reproduced assuming Templeton scattering from a triple-q longitudinal antiferroquadrupolar structure. Electric quadrupole order in NpO_2 could be driven by the ordering at T_0 of magnetic octupoles of Gamma_5 symmetry, splitting the Np ground state quartet and leading to a singlet ground state with zero dipole magnetic moment.Comment: 4 Pages, 3 Figures, submitted to Phys. Rev. Lett. v2: resubmitted after referee report
    corecore