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CONNECTEDNESS PROPERTIES OF THE SET WHERE THE
ITERATES OF AN ENTIRE FUNCTION ARE UNBOUNDED

J.W. OSBORNE, P.J. RIPPON AND G.M. STALLARD

Abstract. We investigate the connectedness properties of the set I+(f) of
points where the iterates of an entire function f are unbounded. In particular,
we show that I+(f) is connected whenever iterates of the minimum modulus
of f tend to ∞. For a general transcendental entire function f , we show that
I+(f)∪{∞} is always connected and that, if I+(f) is disconnected, then it has
uncountably many components, infinitely many of which are unbounded.

1. Introduction

Denote the nth iterate of an entire function f by fn, for n ∈ N. The Fatou set
F (f) is the set of points z ∈ C such that the family of functions {fn : n ∈ N} is
normal in some neighbourhood of z, and the Julia set J(f) is the complement of
F (f). We refer to [4, 5, 8], for example, for an introduction to complex dynamics
and the properties of these sets.

For any z ∈ C, we call the sequence (fn(z))n∈N the orbit of z under f . This
paper is concerned with the set of points whose orbits are unbounded, which we
denote by

I+(f) = {z ∈ C : (fn(z))n∈N is unbounded}.
Clearly, I+(f) contains the escaping set,

I(f) = {z ∈ C : fn(z)→∞ as n→∞},
and is the complement of K(f), the set of points whose orbits are bounded. If f
is a polynomial, then K(f) is the filled Julia set of f , and it is well known that
I+(f) = I(f). However, if f is transcendental, then I+(f) \ I(f) always meets
J(f) and may also meet F (f); see [11] and references therein for the properties
of I+(f) \ I(f).

For a general transcendental entire function, we show in Section 2 that I+(f) has
many properties in common with I(f). For example, we show that the properties
of I(f) proved by Eremenko in [7] also hold for I+(f), and we prove the following
result, which parallels [17, Theorem 4.1].

Theorem 1.1. Let f be a transcendental entire function. Then I+(f) ∪ {∞} is
connected.

In the paper [7], Eremenko remarked that it is plausible that I(f) has no bounded
components. This conjecture has stimulated much research in transcendental
dynamics and remains open, though there have been several partial results –
see for example [12, 14, 19]. One of the strongest partial results for a general
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transcendental entire function [14, Theorem 1] was obtained by considering the
fast escaping set A(f), a subset of I(f) defined in terms of the iterated maximum
modulus function; see Section 4 for a definition. By contrast, in this paper we
show that the connectedness properties of the superset I+(f) of I(f) are related
to a completely new condition involving the iterated minimum modulus function.

We prove the following result, in which

m(r) = m(r, f) := min{|f(z)| : |z| = r},
and mn(r) denotes the nth iterate of the function r 7→ m(r).

Theorem 1.2. Let f be a transcendental entire function for which

(1.1) there exists r > 0 such that mn(r)→∞ as n→∞.
Then I+(f) is connected.

In fact, we show that I+(f) is connected for a more general class of functions
than is covered by Theorem 1.2. Details are given in Section 3.

It is natural to ask which transcendental entire functions satisfy the condi-
tion (1.1). Clearly, there are many that do not – for example, any function
bounded on a path to ∞. However, there are also functions that do satisfy the
condition. In forthcoming work, we consider the consequences of condition (1.1)
for other sets related to I(f) and I+(f), and show that there are many classes of
functions for which condition (1.1) holds. In particular, we show that this is the
case for all entire functions of order less than 1/2, so I+(f) is connected for such
functions. It is an interesting question whether condition (1.1) is also sufficient
to ensure that I(f) is connected.

Note that there are transcendental entire functions for which I+(f) is discon-
nected. For example, if f(z) = sin z, then f maps the real line R onto the
interval [−1, 1], so R is a closed, connected set in K(f) that disconnects I+(f).

In Section 4, we prove a number of results on the components of I+(f) for a
general transcendental entire function, including the following.

Theorem 1.3. Let f be a transcendental entire function such that I+(f) is dis-
connected. Then I+(f) has uncountably many components, infinitely many of
which are unbounded.

The paper is organised as follows. In Section 2, we prove Theorem 1.1 and some
basic properties of I+(f), and in Section 3 we give the proof of Theorem 1.2 and
related results. In Section 4, we prove Theorem 1.3 and a number of other results
on the components of I+(f). Finally, in Section 5, we give some examples related
to the hypotheses of Theorem 1.2 and its generalisation in Section 3.

2. Basic properties of I+(f)

In this section we prove a number of basic properties of I+(f) and discuss the
interaction of I+(f) with the Fatou set and the Julia set. We note first that, for a
transcendental entire function f , it follows immediately from the corresponding
properties of K(f) that I+(f) is completely invariant and that I+(fn) = I+(f),
for n ∈ N.
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As usual, we refer to components of the Fatou set as Fatou components. If U
is a Fatou component of f then, for every n ∈ N, fn(U) ⊂ Un for some Fatou
component Un. A simple normality argument shows that, if U ∩ I+(f) 6= ∅, then
U ⊂ I+(f).

The following properties of I(f) were proved by Eremenko [7]:

I(f) 6= ∅, I(f) ∩ J(f) 6= ∅, J(f) = ∂I(f),

and I(f) has no bounded components.

The proofs that these properties also hold for I+(f) are similar to those for I(f)
so we give only brief details.

Theorem 2.1. Let f be a transcendental entire function. Then

(2.1) I+(f) 6= ∅, I+(f) ∩ J(f) 6= ∅, J(f) = I+(f) ∩ J(f), J(f) = ∂I+(f),

and I+(f) has no bounded components.

Remark. In view of the considerable interest in Eremenko’s conjecture, men-
tioned in Section 1, it is natural to ask whether all the components of I+(f) are
unbounded.

Proof of Theorem 2.1. The first two properties in (2.1) follow immediately from
the corresponding properties of I(f), and the fact that I(f) ⊂ I+(f). The
third property follows from the second by the blowing up property of J(f);
see Lemma 4.2.

It follows from the third property in (2.1) that J(f) ⊂ I+(f). Now since the
repelling periodic points of f are dense in J(f) (see [1, Theorem 1]), any open
set G ⊂ I+(f) satisfies G ⊂ F (f). Hence J(f) ⊂ ∂I+(f). On the other hand, no
point of ∂I+(f) can lie in F (f), since any such point would have a neighbourhood
in I+(f). We conclude that J(f) = ∂I+(f).

Finally, if I+(f) has a bounded component, E say, then there is an open topo-

logical annulus A that surrounds E and lies in the complement of I+(f). Since

I+(f) is completely invariant under f , we deduce by Montel’s theorem that A lies
in a component of F (f), and this component must be multiply connected since
J(f) = ∂I+(f). But any multiply connected Fatou component of f is contained
in I(f) (see [2, Theorem 3.1]) and hence in I+(f), so we obtain a contradiction.
This completes the proof of Theorem 2.1. �

Corollary 2.2. Let f be a transcendental entire function. Then I+(f) is neither
open nor closed.

Proof. If I+(f) is open, then this implies that I+(f) ⊂ F (f), which is a contra-
diction since I+(f) ∩ J(f) 6= ∅. If I+(f) is closed, then since J(f) = ∂I+(f) we
have J(f) ⊂ I+(f), which is again a contradiction. �

Next, we consider Fatou components in I+(f) and their boundaries. A Fatou
component U in I+(f) must be a Baker domain, a preimage of a Baker domain
or a wandering domain. The definitions are as follows, where as before Un denotes
the Fatou component containing fn(U), for n ∈ N:
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• if U = Up for some p ∈ N, so U is periodic with period p, then U is a
Baker domain and has the property that fnp(z) → ∞ as n → ∞ for all
z ∈ U ;
• if U is not eventually periodic, that is, Um 6= Un whenever m 6= n, then
U is a wandering domain.

We refer to [5], for example, for further information on the classification of Fatou
components.

We now state a number of results on the boundaries of the possible types of
Fatou components in I+(f), and prove a simple consequence of these results that
we use later in the paper.

Clearly, Baker domains and their preimages lie in I(f). A Baker domain U of
period p is said to be univalent if fp is univalent in U. Our first lemma is a simple
corollary of [18, Theorem 1.1].

Lemma 2.3. Let f be a transcendental entire function and let U be a univalent
Baker domain of f . Then ∂U ∩ I(f) 6= ∅.

It is an interesting open question whether the conclusion of Lemma 2.3 applies
for any Baker domain U of a transcendental entire function. The following
property of the boundary of a non-univalent Baker domain was proved by Baker
and Domı́nguez [3, Corollary 1.3].

Lemma 2.4. Let f be a transcendental entire function and let U be a Baker
domain of f such that f is not univalent in U . Then ∂U is disconnected.

The next lemma follows from a general result on the boundaries of wandering
domains [11, Theorem 1.5].

Lemma 2.5. Let f be a transcendental entire function and let U be a wandering
domain of f such that U ⊂ I+(f). Then ∂U ∩ I+(f) 6= ∅.

We now prove the following consequence of Lemmas 2.3, 2.4 and 2.5.

Lemma 2.6. Let f be a transcendental entire function. Then every component
of I+(f) that is neither a non-univalent Baker domain nor a preimage of such a
domain must meet J(f). In particular, every component of I+(f) with connected
boundary meets J(f).

Proof. Suppose that f is a transcendental entire function, and that some compo-
nent C of I+(f) does not meet J(f) and is neither a non-univalent Baker domain
nor a preimage of such a domain. Then C ⊂ U for some Fatou component
U ⊂ I+(f), and indeed C = U since C is a component of I+(f). Since C is not a
non-univalent Baker domain or a preimage of such a domain, either some iterate
of f maps C to a univalent Baker domain, or C is wandering domain.

Using the fact that f maps any boundary point of a Fatou component to a
boundary point of a Fatou component, we deduce that

• if C is mapped to a univalent Baker domain, then ∂C ∩ I+(f) 6= ∅ by
Lemma 2.3, and
• if C is a wandering domain, then ∂C ∩ I+(f) 6= ∅ by Lemma 2.5.
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In either case we have a contradiction, since ∂C ⊂ J(f) and C∪{ζ} is connected
for any ζ ∈ ∂C.

The final statement of the lemma follows from the fact that non-univalent Baker
domains and their preimages have disconnected boundaries, by Lemma 2.4. �

Remark. If we were able to show that ∂U ∩ I(f) 6= ∅ for any Baker domain U of
a transcendental entire function f , then it would follow that every component of
I+(f) meets J(f).

We now give the proof of Theorem 1.1. In fact, we prove the following, which
includes a useful equivalent result.

Theorem 2.7. If f is a transcendental entire function, then the following state-
ments hold and are equivalent.

(a) If G is a bounded, simply connected domain such that G ∩ I+(f) 6= ∅, then
∂G ∩ I+(f) 6= ∅.

(b) I+(f) ∪ {∞} is connected.

Note that if E ∪ {∞} is connected, where E is a subset of C, then it does not
follow that the components of E are all unbounded, unless E is closed.

The proof of Theorem 2.7 is similar to that of the corresponding result for I(f)
given in [17, Theorem 4.1]. In particular, we use the following lemma.

Lemma 2.8. [17, Lemma 4.1] Let f be a transcendental entire function. If G is
a bounded, simply connected domain such that G∩J(f) 6= ∅, then ∂G∩I(f) 6= ∅.

Proof of Theorem 2.7. We first prove (a), and then show that this implies (b).
Since it is clear that (b) implies (a), this will prove the theorem.

Let G be a bounded, simply connected domain that meets I+(f). If G∩J(f) 6= ∅,
then ∂G ∩ I+(f) 6= ∅ by Lemma 2.8. Thus we may assume that G ⊂ U for some
Fatou component U ⊂ I+(f), and indeed that G = U , because otherwise we again
have ∂G ∩ I+(f) 6= ∅. Since Baker domains and their preimages are unbounded,
G must be a wandering domain, and it follows from Lemma 2.5 that we again
have ∂G ∩ I+(f) 6= ∅. This proves statement (a).

To show that (a) implies (b), suppose that I+(f) ∪ {∞} is not connected. Then

there exist disjoint open sets G1, G2 ⊂ Ĉ such that

(2.2) I+(f) ∪ {∞} ⊂ G1 ∪G2

and
Gi ∩ (I+(f) ∪ {∞}) 6= ∅, for i = 1, 2.

We can assume that G1 is bounded and simply connected, and that ∞ ∈ G2.
Since G1 meets I+(f), it follows from (a) that ∂G1 ∩ I+(f) 6= ∅, which contra-
dicts (2.2). Thus I+(f) ∪ {∞} is connected, as required. �

3. Proof of Theorem 1.2

Theorem 1.2 states that, if f is a transcendental entire function and there exists
r > 0 such that mn(r) → ∞, then I+(f) is connected. In this section, we prove
the following more general result, which shows that I+(f) is connected for an
even wider class of functions.
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We use the notation N0 for the set of non-negative integers N ∪ {0}, and we say
that a set A ⊂ C surrounds a set B ⊂ C if B lies in a bounded component of
the complement of A.

Theorem 3.1. Suppose that f is a transcendental entire function and there exists
a sequence of bounded, simply connected domains (Dn)n∈N0 such that

(3.1) f(∂Dn) surrounds Dn+1, for n ∈ N0,

and

(3.2) every disc centred at 0 is contained in Dn for sufficiently large n.

Then I+(f) is connected.

Before proving this result we make some remarks.

(1) First we point out that Theorem 1.2 follows from Theorem 3.1. Suppose
that, for a transcendental entire function f , there exists r > 0 such that
mn(r)→∞ as n→∞. If we define

D′n = {z ∈ C : |z| < mn(r)}, for n ∈ N0,

then it is clear that every disc centred at 0 is contained in D′n for sufficiently
large n. Moreover, it follows from the definition of the minimum modulus
function that f(∂D′n) lies in the complement of D′n+1 for all n ∈ N0, and
indeed if N ∈ N0 is such that D′N contains the full orbit of some periodic
point of f , then we have

f(∂D′n) surrounds D′n+1, for n ≥ N.

Putting
Dn = D′n+N , for n ≥ 0,

we see that the conditions of Theorem 3.1 are satisfied for the sequence of
domains (Dn)n∈N0 . Thus Theorem 1.2 follows from Theorem 3.1. There are,
however, transcendental entire functions that meet the conditions of Theo-
rem 3.1 but not those of Theorem 1.2; see Example 5.1.

(2) Many of the functions that meet the conditions of Theorem 3.1 are strongly
polynomial-like, in the sense defined in [10], and so they have the nice prop-
erties of such functions proved in that paper. Strongly polynomial-like func-
tions can be characterised [10, Theorem 1.6] as those transcendental entire
functions for which there exists a sequence of bounded, simply connected
domains (D′n)n∈N0 such that

(i) f(∂D′n) surrounds D′n, for n ∈ N0,
(ii)

⋃
n∈N0

D′n = C, and

(iii) D′n ⊂ D′n+1, for n ∈ N0.

It is easy to see that f is strongly polynomial-like if it satisfies the conditions
of Theorem 1.2, and also if it satisfies the conditions of Theorem 3.1 together
with a condition such as ‘Dn ⊂ Dn+1, for arbitrarily large values of n’.

Note that not all strongly polynomial-like functions meet the conditions of
Theorem 3.1 – indeed there are strongly polynomial-like functions for which
I+(f) is disconnected; see Example 5.2.
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The following lemma contains the key induction step in the proof of Theorem 3.1.

Lemma 3.2. Suppose that f is a transcendental entire function and there exists
a sequence of bounded, simply connected domains (Dn)n∈N0 such that (3.1) and
(3.2) hold. Suppose also that, for some j ∈ N0, there exists nj ∈ N0 and a
continuum Γnj

with the following properties:

(i) Γnj
⊂ K(f) ∩ (C \Dnj

);
(ii) there is a point znj

∈ Γnj
∩ ∂Dnj

;
(iii) there is a point z′nj

∈ Γnj
such that fn(z′nj

) ∈ Dnj+n for all n ∈ N.

Then there exists nj+1 > nj and a continuum Γnj+1
⊂ fnj+1−nj(Γnj

) such that
properties (i), (ii) and (iii) hold with nj replaced by nj+1 throughout.

The proof of Lemma 3.2 depends on the following result from plane topology.

Lemma 3.3. [9, page 84] If E0 is a continuum in Ĉ, E1 is a closed subset of E0

and C is a component of E0 \ E1, then C meets E1.

Proof of Lemma 3.2. Since znj
∈ Γnj

⊂ K(f) and the domains (Dn) satisfy (3.2),
there exists N ∈ N0 such that

(3.3) fn(znj
) ∈ Dnj+n, for n > N.

By property (ii) and (3.1),

(3.4) f(znj
) ∈ C \Dnj+1,

so the minimal integer N such that (3.3) holds is at least 1. Define nj+1 = nj+N ,
where N is this minimal integer. Then, by (3.3) and the minimality of N ,

(3.5) fn(znj
) ∈ Dnj+n, for n > nj+1 − nj,

and
fnj+1−nj(znj

) ∈ C \Dnj+1
.

Moreover, fnj+1−nj(znj
) /∈ ∂Dnj+1

, by (3.1) and (3.5), so

(3.6) fnj+1−nj(znj
) ∈ C \Dnj+1

.

Also, by property (iii),

(3.7) fnj+1−nj(z′nj
) ∈ Dnj+1

.

It follows from (3.6) and (3.7) that the continuum fnj+1−nj(Γnj
) includes points

from both Dnj+1
and C \Dnj+1

(see Figure 1).

Now let Γnj+1
be the component of the closed set

fnj+1−nj(Γnj
) ∩ (C \Dnj+1

)

that contains the point
z′nj+1

:= fnj+1−nj(znj
).

Then we deduce that Γnj+1
meets ∂Dnj+1

by applying Lemma 3.3 with

E0 = fnj+1−nj(Γnj
) ∩ (C \Dnj+1

) and E1 = E0 ∩ ∂Dnj+1
.

Thus there exists znj+1
∈ Γnj+1

∩ ∂Dnj+1
. Therefore, properties (i) and (ii) hold

with nj replaced by nj+1, and property (iii) also holds, since

fn(z′nj+1
) = fn+nj+1−nj(znj

) ∈ Dnj+1+n, for n ∈ N,

by (3.5). �
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Γnj
z′nj

znj

fnj+1−nj(Γnj
)

fnj+1−nj(z′nj
)

z′nj+1
= fnj+1−nj(znj

)
znj+1

∂Dnj ∂Dnj+1

Γnj+1

Figure 1. Proof of Lemma 3.2.

Remark. Note that property (i) in Lemma 3.2 could be weakened to the property

Γnj
⊂ {z : fn(z) ∈ Dnj+n for n > N = N(z)} ∩ (C \Dnj

),

since the only place in the proof where we use the fact that Γnj
⊂ K(f) is to

deduce (3.3) and it is clear that, if Γnj
satisfies this weaker property, then any

point z ∈ Γnj+1
⊂ fnj+1−nj(Γnj

) must satisfy property (iii) with nj replaced
by nj+1.

Next, we state two further topological lemmas that are needed for the proof of
Theorem 3.1. The first is a useful characterisation of a disconnected subset of
the plane.

Lemma 3.4. [13, Lemma 3.1] A subset S of C is disconnected if and only if
there exists a closed, connected set E ⊂ C such that S ∩ E = ∅ and at least two
different components of Ec intersect S.

We also need the following generalisation of [15, Lemma 1], given in [20]. This
result will be used again later in the paper.

Lemma 3.5. Let (Ej)j∈N0 be a sequence of compact sets in C, (mj)j∈N0 be a
sequence of positive integers and f be a transcendental entire function such that
Ej+1 ⊂ fmj(Ej), for j ∈ N0. Set pk =

∑k
j=0mj, for k ∈ N0. Then there exists

ζ ∈ E0 such that
fpk(ζ) ∈ Ek+1, for k ∈ N0.

We now give the proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose that I+(f) is disconnected. Then, by Lemma 3.4,
there is a closed, connected set E ⊂ K(f) such that two distinct components of
Ec, say G1 and G2, each meet I+(f). Evidently the boundaries of G1 and G2

are connected and are contained in K(f). By Theorem 2.7(a), we deduce that
G1 and G2 are both unbounded, so ∂G1 and ∂G2 are unbounded, as are their
images under the iterates of f , by (3.1) and (3.2).

We now show that there exists n0 ∈ N and a continuum Γn0 that satisfies prop-
erties (i), (ii) and (iii) in Lemma 3.2, with j = 0.
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Without loss of generality we can assume, by (3.2), that for some point α ∈ ∂G1

every domain Dn, n ∈ N0, contains the entire orbit of α. By Lemma 3.3, there
exists a continuum Γ ⊂ ∂G1 such that α ∈ Γ and Γ ∩ ∂D0 6= ∅.
Now take z0 ∈ Γ ∩ ∂D0 and choose N ∈ N such that fn(z0) ∈ DN , for n ∈ N0.
Since f(z0) ∈ C \ D1, by (3.1), it follows that the maximal value n0 of n ∈ N
such that fn(z0) ∈ C \ Dn satisfies 1 ≤ n0 < N . Note that z′n0

:= fn0(z0) lies

outside Dn0 , so fn0(Γ) ∩ ∂Dn0 6= ∅.
Now let Γn0 be the component of fn0(Γ)\Dn0 that contains z′n0

. Then Γn0 meets
∂Dn0 , by Lemma 3.3 again. It follows that the continuum Γn0 satisfies

(i) Γn0 ⊂ K(f) ∩ (C \Dn0);
(ii) there is a point zn0 ∈ Γn0 ∩ ∂Dn0 ;

(iii) there is a point z′n0
∈ Γn0 such that fn(z′n0

) ∈ Dn0+n for all n ∈ N.

Thus by Lemma 3.2 there is a strictly increasing sequence (nj)j∈N0 and a sequence
of continua (Γnj

)j∈N0 such that, for each j ∈ N0,

(i) Γnj
⊂ K(f) ∩ (C \Dnj

);
(ii) there is a point znj

∈ Γnj
∩ ∂Dnj

;
(iii) there is a point z′nj

∈ Γnj
such that fn(z′nj

) ∈ Dnj+n for all n ∈ N;

(iv) fnj+1−nj(Γnj
) ⊃ Γnj+1

.

We now apply Lemma 3.5 with

Ej = Γnj
and mj = nj+1 − nj, for j ∈ N0.

Then, by property (iv),

fmj(Ej) ⊃ Ej+1, for j ∈ N0.

We deduce that there exists ζ ∈ E0 = Γn0 such that

fpk(ζ) ∈ Ek+1, for k ∈ N0,

where pk = m0 + · · ·+mk = nk+1 − n0; that is,

fnk+1−n0(ζ) ∈ Γnk+1
, for k ∈ N0.

Thus, by (3.2) and property (i) of the sequence of continua (Γnj
),

fnk+1−n0(ζ)→∞ as k →∞,

so ζ ∈ I+(f), which contradicts the fact that ζ ∈ Γn0 ⊂ K(f). This completes
the proof of Theorem 3.1. �

Remark. This proof shows that, under the hypotheses of Theorem 3.1, if K is
any closed connected set in K(f) and α ∈ K, then there is a positive constant
C(K,α) such thatK ⊂ {z : |z| ≤ C(K,α)}. It follows that, under the hypotheses
of Theorem 3.1, any Fatou component of f contained in K(f) is bounded.

If f is strongly polynomial-like, then this conclusion about Fatou components
is already known and moreover such Fatou components cannot be wandering
domains [10, Theorem 1.4]. However, under this hypothesis K(f) may contain
an unbounded closed connected set; see Example 5.2.
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4. Components of I+(f)

In this section we prove Theorem 1.3 and a number of other results about the
components of I+(f).

We begin by proving the following, which parallels the result for I(f) in [18,
Theorem 1.2]. Several of the results in this section follow from this result with
appropriate choices of the set E.

Theorem 4.1. Let f be a transcendental entire function and let E be a set such
that E ⊂ I+(f) and J(f) ⊂ E. Then either I+(f) is connected or it has infinitely
many components that meet E.

It follows immediately from Theorem 4.1, by taking E = I+(f) and using (2.1),
that either I+(f) is connected or it has infinitely many components. However,
Theorem 1.3 is considerably stronger than this statement.

The proof of Theorem 4.1 uses the well known blowing up property of the Julia
set, stated as the next lemma. Here E(f) is the exceptional set of f , that is, the
set of points with a finite backwards orbit under f (which for a transcendental
entire function contains at most one point).

Lemma 4.2. Let f be an entire function, let K be a compact set such that
K ⊂ C \ E(f) and let G be an open neighbourhood of z ∈ J(f). Then there
exists N ∈ N such that fn(G) ⊃ K, for all n ≥ N.

The proof of Theorem 4.1 also uses the following result. This was proved in the
special case that F = I(f) in [17, Theorem 5.1(a)].

Lemma 4.3. Let f be a transcendental entire function, and let E and F be sets
such that E ⊂ F , F is backwards invariant, and J(f) ⊂ E. If E meets only
finitely many components of F , then F ∩ J(f) lies in a single component of F .

Proof. Suppose that E is contained in the union of finitely many components
of F , say F1, F2, . . . , Fm. Take any z ∈ F ∩ J(f). Since J(f) ⊂ E, there exist
zn ∈ E such that zn → z as n→∞. Without loss of generality all terms of this
sequence (zn) lie in a single component, Fj say. Since z ∈ F , we have z ∈ Fj.
Hence

(4.1) F ∩ J(f) ⊂ F1 ∪ F2 ∪ · · · ∪ Fm.
We now assume that F1, F2, . . . , Fm is the minimal set of components of F such
that (4.1) holds. Then Fj ∩ J(f) 6= ∅, for j = 1, 2, . . . ,m. Note that if the
exceptional set E(f) is non-empty, then

(4.2) (Fj \ E(f)) ∩ J(f) 6= ∅, for j = 1, 2, . . . ,m.

Indeed, if E(f) = {α} ⊂ Fj ∩ J(f), then it follows from Lemma 4.2 that α is a
limit point of the backwards orbit of any non-exceptional point in F ∩ J(f) and
hence α is the limit of a sequence in Fi ∩ J(f), say, by (4.1). Thus i = j and so
(4.2) holds.

If m = 1, then F ∩ J(f) is contained in one component of F , as required. If
m > 1, then we can take z1 ∈ F1 ∩ J(f) and an open disc D centred at z1 so
small that

(4.3) D ∩ (F2 ∪ · · · ∪ Fm) = ∅.
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Consider Fj, j ≥ 2. Then there exists N ∈ N such that fN(D) meets both
F1 ∩ J(f) and Fj ∩ J(f), by (4.2) and Lemma 4.2. Hence there exist w1, wj ∈ D
such that

fN(w1) ∈ F1 ∩ J(f) and fN(wj) ∈ Fj ∩ J(f),

so w1, wj ∈ F1 by the backwards invariance of F ∩ J(f) and (4.3). Thus fN(F1)
is a connected subset of F that meets both F1 and Fj, which is a contradiction.
This completes the proof. �

We now deduce Theorem 4.1 from Lemma 4.3.

Proof of Theorem 4.1. Let E be a set such that E ⊂ I+(f) and J(f) ⊂ E.
Suppose that E meets only finitely many components of I+(f). Then, since
I+(f) is backwards invariant, it follows from Lemma 4.3 with F = I+(f) that
I+(f) ∩ J(f) lies in a single component of I+(f). We shall deduce from this that
I+(f) is connected.

It follows from Lemma 2.6 that, if there is a component of I+(f) that does not
meet J(f), then it must be a Baker domain with a disconnected boundary, or a
preimage of such a Baker domain. Suppose then that U is such a component.
Then U has more than one complementary component, each of which is closed
and unbounded, and meets J(f).

All the points of I+(f) ∩ J(f) lie in these complementary components of U ,
and I+(f)∩J(f) cannot be contained in a single complementary component of U

because J(f) = I+(f) ∩ J(f), by Theorem 2.1. Hence the component C1 of I+(f)
that contains I+(f)∩J(f) must meet at least two complementary components of
U and so it must meet the boundaries of these two complementary components,
which are subsets of ∂U . This contradicts the fact that ∂U ∩ I+(f) = ∅. Hence
such a component U of I+(f) cannot exist. Thus any component of I+(f) must
meet J(f) and hence must lie in C1; that is, I+(f) is connected. This completes
the proof. �

We now show that several connectedness properties of I+(f) follow easily from
Theorem 4.1. First, noting Eremenko’s result [7] that J(f) = ∂I(f), we apply
Theorem 4.1 with E = I(f) to give the following.

Corollary 4.4. Let f be a transcendental entire function. If I(f) is connected,
then I+(f) is connected.

Next, we give conditions for I+(f) and I+(f) ∩ J(f) to be spiders’ webs. We say
that a connected set E is a spider’s web if there exists a sequence (Gn)n∈N of
bounded, simply connected domains such that

Gn ⊂ Gn+1 and ∂Gn ⊂ E, for each n ∈ N, and
⋃
n∈N

Gn = C.

Clearly, any connected set that contains a spider’s web is itself a spider’s web, so
it follows from Corollary 4.4 that if I(f) is a spider’s web, then I+(f) is a spider’s
web. In fact, we prove the following more general result.
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Corollary 4.5. Let f be a transcendental entire function.

(a) If I+(f) contains a spider’s web, then I+(f) is a spider’s web.
(b) If I+(f) ∩ J(f) contains a spider’s web, then I+(f) ∩ J(f) is a spider’s web.

We prove Corollary 4.5 by using various properties of the subset of I(f) known
as the fast escaping set A(f). This set, introduced in [6] and studied in detail in
[14, 16], may be defined as follows:

A(f) = {z ∈ C : there exists ` ∈ N such that |fn+`(z)| ≥Mn(R, f), for n ∈ N},
where

M(r, f) = max
|z|=r
|f(z)|,

R > 0 is such that M(r, f) > r for r ≥ R, and Mn(r, f) denotes the nth iterate of
the function r 7→M(r, f). In particular, we use the facts that J(f) = ∂A(f), that
all components of A(f) are unbounded, and that all components of A(f)∩ J(f)
are unbounded whenever f has no multiply connected Fatou components. For
proofs of these properties we refer to [16], for example.

Proof of Corollary 4.5. To prove part (a), suppose that I+(f) contains a spider’s
web and let C1 be the component of I+(f) containing the spider’s web. Then,
since all the components of A(f) are unbounded, we have A(f) ⊂ C1. Also, since
J(f) = ∂A(f), we can apply Theorem 4.1 with E = A(f). It follows that I+(f)
is connected and hence that I+(f) is a spider’s web.

The proof of part (b) is similar. If I+(f) ∩ J(f) contains a spider’s web, then f
has no multiply connected Fatou components by [2, Theorem 3.1]. Hence every
component of A(f)∩J(f) is unbounded, so if C2 is the component of I+(f)∩J(f)
that contains the spider’s web, we have A(f)∩J(f) ⊂ C2. The result then follows
by applying Theorem 4.1 with E = A(f) ∩ J(f). �

Finally in this section, we prove Theorem 1.3. In fact, we prove the following
slightly stronger result.

Theorem 4.6. Let f be a transcendental entire function such that I+(f) is dis-
connected. Then:

(a) I+(f) has infinitely many unbounded components;
(b) every neighbourhood of a point in J(f) meets uncountably many components

of I+(f).

The proof of Theorem 4.6(b) is closely related to other proofs of this type (for
example, [10, Theorem 1.3]), but we give it in full for the convenience of the
reader.

Proof of Theorem 4.6. For part (a), we again apply Theorem 4.1 with E = A(f)
and conclude that, if I+(f) is disconnected, then there are infinitely many com-
ponents of I+(f) that meet A(f). Since, as noted earlier, all components of A(f)
are unbounded, the result follows.

To prove part (b), note first that, since I+(f) is disconnected, it follows from
Lemma 3.4 that there exists a closed connected set Γ ⊂ K(f) with two comple-
mentary components, say G0 and G1, each containing points in I+(f).
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Now since the boundaries of G0 and G1 are connected and lie in K(f), both
G0 and G1 must meet J(f). For suppose that G0, say, lies in F (f). Then since
∂G0 ⊂ K(f), it follows that G0 is a Fatou component that is also a component of
I+(f). However, since ∂G0 is connected, Lemma 2.6 shows that this is impossible.
So, for i = 0, 1, there exist zi ∈ J(f) and a bounded open neighbourhood Hi

of zi such that Hi ⊂ Gi \ E(f).

Also, since J(f) is unbounded, for each n ≥ 2 there is a point zn ∈ J(f) and a
bounded open neighbourhood Hn of zn, with the properties that Hn ∩E(f) = ∅
and infz∈Hn |z| → ∞ as n→∞.

Now let z be an arbitrary point in J(f) and let V be a bounded open neighbour-
hood of z. Then, by Lemma 4.2, there exists k ∈ N such that

(4.4) fk(V ) ⊃ H0 ∪H1,

and, for any n ≥ 2, there exists mn ∈ N such that

(4.5) fmn(H0) ⊃ Hn, f
mn(H1) ⊃ Hn and fmn(Hn) ⊃ H0 ∪H1.

Now let s = s1s2s3 . . . be an infinite sequence of 0s and 1s. We will show that
there is an uncountable set of such sequences that encode the orbits of points
that lie in distinct components of I+(f) that meet V .

To show this, put E0 = V and, for n ∈ N, set

E2n = Hn+1 and E2n−1 = Hsn .

Then, for each sequence s = s1s2s3 . . ., it follows from (4.4), (4.5) and Lemma 3.5
that there is a corresponding sequence (pn)n∈N and a point ζs ∈ V such that
fpn(ζs) ∈ En for n ∈ N. Furthermore, all such points must lie in I+(f).

We now claim that points in V ∩ I+(f) whose orbits are encoded by different
infinite sequences of 0s and 1s must lie in different components of I+(f). For if
two such sequences differ, then some iterate of f will map one point to G0 and
the other to G1. Thus, if the two points are in the same component C of I+(f),
then some iterate of C meets Γ ⊂ K(f), which is a contradiction.

Evidently, the set of all sequences s = s1s2s3 . . . of 0s and 1s can be put in one-to-
one correspondence with the binary representations of points in the unit interval.
We have therefore shown that every neighbourhood of an arbitrary point in J(f)
meets uncountably many components of I+(f), and this proves part (b). �

Remark. It follows by a similar argument to the proof of Theorem 4.6(b) that,
for a transcendental entire function f , every neighbourhood of a point in J(f)
meets uncountably many components of I+(f)∩J(f). The proof uses Lemma 3.5
with the compact sets En, n ≥ 0, in the above proof replaced by En ∩ J(f),
n ≥ 0.

5. Examples

In this section, we give details of the two examples referred to in the remarks
after the statement of Theorem 3.1.

First, we give an example of a transcendental entire function that satisfies the
conditions of Theorem 3.1 but not those of Theorem 1.2.
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Example 5.1. Let f be the transcendental entire function defined by

f(z) = −10ze−z − 1
2
z.

Then f satisfies the conditions of Theorem 3.1, so I+(f) is connected, but there
is no r > 0 such that mn(r)→∞ as n→∞.

Proof. Since
m(r) ≤ |f(r)| = 1

2
r(1 + o(1)) as r →∞,

it is clear that there is no r > 0 such that mn(r)→∞ as n→∞.
We show, nevertheless, that I+(f) is connected because (3.1) and (3.2) in the
statement of Theorem 3.1 are satisfied.

Let (Dn)n∈N be the sequence of nested domains defined by

Dn = {z ∈ C : 0 < Re z < 4nπ, |Im z| < 4nπ}
∪ {z ∈ C : −nπ < Re z ≤ 0, |Im z| < nπ} .

(Here, for convenience, we have labelled the domains with subscripts in N rather
than in N0.) Each domain Dn is the union of two rectangles, the larger in the
right half-plane and the smaller in the left half-plane (see Figure 2). It is clear
that (3.2) is satisfied by this sequence of domains.

We now show that (3.1) is also satisfied for n > 1. To see this, consider Figure 2,
in which sections of the boundary of Dn are labelled with lower case letters and
their images under f with the corresponding upper case letters. The following
brief notes discuss the images of different sections of the boundary of Dn using
the same labelling as in the figure.

Section a On this section z = 4nπ + iy, where −4nπ ≤ y ≤ 4nπ, so

|f(z)− (−1
2
z)| = |f(z)− (−2nπ − 1

2
iy)| ≤ 40π

√
2 exp(−4π) < 10−3,

and hence f(z) evidently lies outside Dn+1 for n > 1.

Section b On this section z = x+ 4nπi, where 0 ≤ x ≤ 4nπ, so

f(z) = −1
2
x− 10xe−x + i

(
−2nπ − 40nπe−x

)
,

lies in the left half-plane, below the line Im z = −2nπ, and hence outside Dn+1.
The image of this section meets the imaginary axis at f(4nπi) = −42nπi (off
the scale in Figure 2).

Section c Here z = iy, where nπ ≤ y ≤ 4nπ. The term −10ze−z is dominant,
and since this section has length 3nπ, the image of the section winds around the
origin, the factor of 10 ensuring that it stays outside Dn+1. The image is thus a
spiralling curve joining f(4nπi) = −42πi to f(nπi) = (19/2)nπi.

Section d This section of the boundary is the union of the three line segments

z =x+ nπi, −nπ ≤ x ≤ 0,

z =− nπ + iy, −nπ ≤ y ≤ nπ,

z =x− nπi, −nπ ≤ x ≤ 0.

On all three segments the modulus of 10ze−z is at least 10nπ and exceeds the
modulus of 1

2
z by a factor of at least 20, so the images of these segments lie well

outside Dn+1. Most of these images lies off the scale in Figure 2.

Sections e and f The images of these sections of the boundary are the reflections
in the real axis of the images of sections c and b, respectively.
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4(n+ 1)π4nπ

nπi

−nπi

4(n+ 1)πi

−4(n+ 1)πi

∂Dn

∂Dn+1

a

b

c

d

e

f

D

D

E

C

F

B

Af(∂Dn)

Figure 2. The boundary of the domain Dn and its image under
the function f : z 7→ −10ze−z − 1

2
z (see Example 5.1), illustrated

for n = 2. Sections of the boundary of Dn are labelled with lower
case letters and their images with the corresponding upper case
letters. Only the immediate vicinity of Dn is shown.

We have now shown that the whole of f(∂Dn) lies outside Dn+1, so the conditions
of Theorem 3.1 are satisfied and hence I+(f) is connected. �

Next, we show that not all transcendental entire functions that are strongly
polynomial-like in the sense defined in [10] meet the conditions of Theorem 3.1.
The authors are grateful to Dave Sixsmith for suggesting this example.

Example 5.2. Let f be the transcendental entire function defined by

f(z) = cos z + z.

Then f is strongly polynomial-like and I+(f) is disconnected.

Proof. By [10, Theorem 1.6], a transcendental entire function f is strongly poly–
nomial-like if and only if there exists a sequence of bounded, simply connected
domains (Dn)n∈N0 such that

(i) f(∂Dn) surrounds Dn, for n ∈ N0,
(ii)

⋃
n∈N0

Dn = C, and

(iii) Dn ⊂ Dn+1, for n ∈ N0.

Let (Dn)n∈N0 be the sequence of nested open rectangles defined by

Dn =

{
z ∈ C : −

(
2n+

11

4

)
π < Re z <

(
2n+

9

4

)
π, |Im z| < 2(n+ 1)π

}
.

Then properties (ii) and (iii) are evidently satisfied.



16 J.W. OSBORNE, P.J. RIPPON AND G.M. STALLARD

To show that property (i) is also satisfied, consider first the images under f of
the two sides of the rectangle Dn parallel to the real axis. Writing

f(z) = 1
2
(eiz + e−iz) + z,

we see that f maps both these sides into the annulus

{z : 1
2
e2(n+1)π − 4(n+ 1)π < |z| < 1

2
e2(n+1)π + 4(n+ 1)π},

which clearly lies outside Dn for all n ∈ N0.

Next, if z lies on the vertical side of Dn in the right half-plane, we have

Re f(z) = Re z +
1

2
√

2
(ey + e−y),

where y = Im z. Similarly, for points on the vertical side of Dn in the left
half-plane,

Re f(z) = Re z − 1

2
√

2
(ey + e−y).

It follows that f(∂Dn) surrounds Dn, for n ∈ N0, so f is strongly polynomial-like.

Now, f has fixed points at z = (k + 1
2
)π, k ∈ Z. These fixed points are repelling

if k is odd and superattracting if k is even, and all points on the real axis
except for the repelling fixed points tend under iteration towards the nearest
superattracting fixed point. It follows that the real axis lies in K(f), and indeed
that the real axis is a closed, connected set in K(f) that disconnects I+(f). �

Remark. It can be shown that K(f) is connected for the function f in Exam-
ple 5.2. We omit the details.

References

[1] I.N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252–256.
[2] I.N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math.

Soc. (3), 49 (1984), 563–576.
[3] I.N. Baker and P. Domı́nguez, Boundaries of unbounded Fatou components of entire func-

tions, Ann. Acad. Sci. Fenn. Math., 24 (1999), 437–464.
[4] A.F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics 132,

Springer-Verlag, 1991.
[5] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29 (1993),

151–188.
[6] W. Bergweiler and A. Hinkkanen, On semiconjugation of entire functions, Math. Proc.

Camb. Phil. Soc., 126 (1999), 565–574.
[7] A.E. Eremenko, On the iteration of entire functions, Dynamical systems and ergodic the-

ory, Banach Center Publications 23, Polish Scientific Publishers, Warsaw, 1989, 339–345.
[8] J. Milnor, Dynamics in one complex variable, Third Edition, Princeton University Press,

2006.
[9] M.H.A. Newman, Elements of the topology of plane sets of points, Cambridge University

Press, Reprinted 2008.
[10] John Osborne, Connectedness properties of the set where the iterates of an entire function

are bounded, Math. Proc. Camb. Phil. Soc., 155 (3) (2013), 391–410.
[11] J.W. Osborne and D.J. Sixsmith, On the set where the iterates of an entire function are

neither escaping nor bounded. Preprint, arXiv:1503.08077.
[12] L. Rempe, On a question of Eremenko concerning escaping components of entire functions,

Bull. London Math. Soc., 39 (4) (2007), 661–666.
[13] L. Rempe, Connected escaping sets of exponential maps, Ann. Acad. Sci. Fenn. Math.,

36 (2011), 71–80.



CONNECTEDNESS PROPERTIES OF I+(f) 17

[14] P.J. Rippon and G.M. Stallard, On questions of Fatou and Eremenko, Proc. Amer. Math.
Soc., 133 (2005), 1119–1126.

[15] P.J. Rippon and G.M. Stallard, Slow escaping points of meromorphic functions, Trans.
Amer. Math. Soc., 363 (8) (2011), 4171–4201.

[16] P.J. Rippon and G.M. Stallard, Fast escaping points of entire functions. Proc. London
Math. Soc., 105 (4) (2012), 787–820.

[17] P.J. Rippon and G.M. Stallard, Boundaries of escaping Fatou components, Proc. Amer.
Math. Soc., 139, No. 8, (2011), 2807–2820.

[18] P.J. Rippon and G.M. Stallard, Boundaries of univalent Baker domains. To appear in
Journal d’Analyse. arXiv:1411.6999.

[19] G. Rottenfusser, J. Rückert, L. Rempe and D. Schleicher, Dynamic rays of bounded-type
entire functions, Annals of Mathematics, 173 (1) (2011), 77–125.

[20] D.J. Sixsmith, Maximally and non-maximally fast escaping points of transcendental entire
functions, Math. Proc. Camb. Phil. Soc., 158 (2) (2015), 365–383.

Department of Mathematics and Statistics, The Open University, Walton Hall,
Milton Keynes MK7 6AA, UK

E-mail address: john.osborne@open.ac.uk, phil.rippon@open.ac.uk, gwyneth.stallard@open.ac.uk


