research

2-Player Nash and Nonsymmetric Bargaining Games: Algorithms and Structural Properties

Abstract

The solution to a Nash or a nonsymmetric bargaining game is obtained by maximizing a concave function over a convex set, i.e., it is the solution to a convex program. We show that each 2-player game whose convex program has linear constraints, admits a rational solution and such a solution can be found in polynomial time using only an LP solver. If in addition, the game is succinct, i.e., the coefficients in its convex program are ``small'', then its solution can be found in strongly polynomial time. We also give a non-succinct linear game whose solution can be found in strongly polynomial time

    Similar works

    Full text

    thumbnail-image

    Available Versions