27 research outputs found

    Let’s Play Ball: COVID-19 Graduated Return to Play Guidlelines [Blog]

    Get PDF
    The outbreak of Coronavirus disease (COVID-19) resulted in suspension of youth, academic and professional sport in New Zealand, and around the world. Following resumption of domestic and international competition there have been several reports of an increased number of athletes testing positive for COVID-19 after returning to competition (1). In light of these concerns, it is essential that sporting organisations provide ‘informative, consistent and specific guidance for safe return to training and competition’ (2), delivered in context to the sport. This blog presents an overview of the Basketball New Zealand COVID-19 Graduated Return to Play (GRTP) Guidelines and is written to assist athletes resume safe training ahead of return to competition that promotes health and performance in an easy-to-follow GRTP infographic

    The Impact of Experimental Pain on Shoulder Movement During an Arm Elevated Reaching Task in a Virtual Reality Environment

    Get PDF
    Background: People with chronic shoulder pain have been shown to present with motor adaptations during arm movements. These adaptations may create abnormal physical stress on shoulder tendons and muscles. However, how and why these adaptations develop from the acute stage of pain is still not well-understood. Objective: To investigate motor adaptations following acute experimental shoulder pain during upper limb reaching. Methods: Forty participants were assigned to the Control or Pain group. They completed a task consisting of reaching targets in a virtual reality environment at three time points: (1) baseline (both groups pain-free), (2) experimental phase (Pain group experiencing acute shoulder pain induced by injecting hypertonic saline into subacromial space), and (3) Post experimental phase (both groups pain-free). Electromyographic (EMG) activity, kinematics, and performance data were collected. Results: The Pain group showed altered movement planning and execution as shown by a significant increased delay to reach muscles EMG peak and a loss of accuracy, compared to controls that have decreased their mean delay to reach muscles peak and improved their movement speed through the phases. The Pain group also showed protective kinematic adaptations using less shoulder elevation and elbow flexion, which persisted when they no longer felt the experimental pain. Conclusion: Acute experimental pain altered movement planning and execution, which affected task performance. Kinematic data also suggest that such adaptations may persist over time, which could explain those observed in chronic pain populations

    Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring

    Get PDF
    Acknowledgements K. Ashbrook, M. Barrueto, K. Elner, A. Hargreaves, S. Jacobs, G. Lancton, M. LeVaillant, E. Grosbellet, A. Moody, A. Ronston, J. Provencher, P. Smith, K. Woo and P. Woodward helped in the field. J. Nakoolak kept us safe from bears. N. Sapir and two anonymous reviewers provided very useful comments on an earlier version of our manuscript. R. Armstrong at the Nunavut Research Institute, M. Mallory at the Canadian Wildlife Service Northern Research Division and C. Eberl at National Wildlife Research Centre in Ottawa provided logistical support. F. Crenner, N. Chatelain and M. Brucker customized the GPS at the IPHC-CNRS. KHE received financial support through a NSERC Vanier Canada Graduate Scholarship, ACUNS Garfield Weston Northern Studies scholarship and AINA Jennifer Robinson Scholarship and JFH received NSERC Discovery Grant funding. J. Welcker generously loaned some accelerometers. All procedures were approved under the guidelines of the Canadian Council for Animal Care.Peer reviewedPublisher PD

    Hip abduction weakness in elite junior footballers is common but easy to correct quickly: a prospective sports team cohort based study

    Get PDF
    Background: Hip abduction weakness has never been documented on a population basis as a common finding in a healthy group of athletes and would not normally be found in an elite adolescent athlete. This study aimed to show that hip abduction weakness not only occurs in this group but also is common and easy to correct with an unsupervised home based program. Methods: A prospective sports team cohort based study was performed with thirty elite adolescent under-17 Australian Rules Footballers in the Australian Institute of Sport/Australian Football League Under-17 training academy. The players had their hip abduction performance assessed and were then instructed in a hip abduction muscle training exercise. This was performed on a daily basis for two months and then they were reassessed.Results: The results showed 14 of 28 athletes who completed the protocol had marked weakness or a side-to-side difference of more than 25% at baseline. Two months later ten players recorded an improvement of ≥ 80% in their recorded scores. The mean muscle performance on the right side improved from 151 Newton (N) to 202 N (p<0.001) while on the left, the recorded results improved from 158 N to 223 N (p<0.001). Conclusions: The baseline values show widespread profound deficiencies in hip abduction performance not previously reported. Very large performance increases can be achieved, unsupervised, in a short period of time to potentially allow large clinically significant gains. This assessment should be an integral part of preparticipation screening and assessed in those with lower limb injuries. This particular exercise should be used clinically and more research is needed to determine its injury prevention and performance enhancement implications

    The effects of spatially heterogeneous prey distributions on detection patterns in foraging seabirds

    Get PDF
    Many attempts to relate animal foraging patterns to landscape heterogeneity are focused on the analysis of foragers movements. Resource detection patterns in space and time are not commonly studied, yet they are tightly coupled to landscape properties and add relevant information on foraging behavior. By exploring simple foraging models in unpredictable environments we show that the distribution of intervals between detected prey (detection statistics)is mostly determined by the spatial structure of the prey field and essentially distinct from predator displacement statistics. Detections are expected to be Poissonian in uniform random environments for markedly different foraging movements (e.g. L\'evy and ballistic). This prediction is supported by data on the time intervals between diving events on short-range foraging seabirds such as the thick-billed murre ({\it Uria lomvia}). However, Poissonian detection statistics is not observed in long-range seabirds such as the wandering albatross ({\it Diomedea exulans}) due to the fractal nature of the prey field, covering a wide range of spatial scales. For this scenario, models of fractal prey fields induce non-Poissonian patterns of detection in good agreement with two albatross data sets. We find that the specific shape of the distribution of time intervals between prey detection is mainly driven by meso and submeso-scale landscape structures and depends little on the forager strategy or behavioral responses.Comment: Submitted first to PLoS-ONE on 26/9/2011. Final version published on 14/04/201

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Electromyographic response of shoulder muscles to acute experimental subacromial pain

    No full text
    a b s t r a c t This study investigated effects of experimentally-induced subacromial pain, induced via hypertonic saline injection, on shoulder muscles activity. Electromyographic activity of 20 healthy participants was assessed for humeral elevation and descent for the control and experimental pain conditions, using fine wire electrodes for subscapularis and supraspinatus and surface electrodes for middle deltoid, upper trapezius, lower trapezius, infraspinatus, and serratus anterior. Normalized mean amplitudes were analyzed for each muscle for four phases for elevation and descent, respectively. Repeated measures analysis of variances (ANOVAs) were used to determine differences between muscle activity in the control and experimental condition for the four phases of elevation and descent. Differences for mean normalized amplitudes were not significant during humeral elevation. Increased activity was found for the pain condition for serratus anterior and middle deltoid during the first (120e90 ) and third (60e30 ) parts and decreased activity for infraspinatus in the second half of descent (60e0 ). No significant differences were found during descent for upper and lower trapezius, subscapularis and supraspinatus. While increased serratus anterior activity during 60e30 of descent may be protective, increased middle deltoid and decreased infraspinatus activity during the same range may threaten subacromial tissues in that range. Overall the changes in muscle activation were individual specific, particularly during the concentric elevation phase

    Electromyographic Response of Shoulder Muscles to Acute Experimental Subacromial Pain

    No full text
    This study investigated effects of experimentally-induced subacromial pain, induced via hypertonic saline injection, on shoulder muscles activity. Electromyographic activity of 20 healthy participants was assessed for humeral elevation and descent for the control and experimental pain conditions, using fine wire electrodes for subscapularis and supraspinatus and surface electrodes for middle deltoid, upper trapezius, lower trapezius, infraspinatus, and serratus anterior. Normalized mean amplitudes were analyzed for each muscle for four phases for elevation and descent, respectively. Repeated measures analysis of variances (ANOVAs) were used to determine differences between muscle activity in the control and experimental condition for the four phases of elevation and descent. Differences for mean normalized amplitudes were not significant during humeral elevation. Increased activity was found for the pain condition for serratus anterior and middle deltoid during the first (120-90°) and third (60-30°) parts and decreased activity for infraspinatus in the second half of descent (60-0°). No significant differences were found during descent for upper and lower trapezius, subscapularis and supraspinatus. While increased serratus anterior activity during 60-30° of descent may be protective, increased middle deltoid and decreased infraspinatus activity during the same range may threaten subacromial tissues in that range. Overall the changes in muscle activation were individual specific, particularly during the concentric elevation phase

    The Effect of Experimentally-Induced Subacromial Pain on Proprioception

    No full text
    Shoulder injuries may be associated with proprioceptive deficits, however, it is unknown whether these changes are due to the experience of pain, tissue damage, or a combination of these. The aim of this study was to investigate the effect of experimentally-induced sub-acromial pain on proprioceptive variables. Sub-acromial pain was induced via hypertonic saline injection in 20 healthy participants. Passive joint replication (PJR) and threshold to detection of movement direction (TTDMD) were assessed with a Biodex System 3 Pro isokinetic dynamometer for baseline control, experimental pain and recovery control conditions with a starting position of 60° shoulder abduction. The target angle for PJR was 60° external rotation, starting from 40°. TTDMD was tested from a position of 20° external rotation. Repeated measures ANOVAs were used to determine differences between PJR absolute and variable errors and TTDMD for the control and experimental conditions. Pain was elicited with a median 7 on the Numeric Pain Rating Scale. TTDMD was significantly decreased for the experimental pain condition compared to baseline and recovery conditions (≈30%, P=0.003). No significant differences were found for absolute (P=0.152) and variable (P=0.514) error for PJR. Movement sense was enhanced for the experimental sub-acromial pain condition, which may reflect protective effects of the central nervous system in response to the pain. Where decreased passive proprioception is observed in shoulders with injuries, these may be due to a combination of peripheral tissue injury and neural adaptations that differ from those due to acute pain
    corecore