6,718 research outputs found

    Habitable Zone Lifetime of Exoplanets around Main Sequence Stars

    Get PDF
    Funding: Dean's Scholarship at the University of East Anglia.The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star’s main sequence lifetime. We describe the time that a planet spends within the HZ as its ‘‘habitable zone lifetime.’’ The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the ‘‘classic’’ HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a ‘‘hybrid’’ HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79 · 109 years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets’ HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.Publisher PDFPeer reviewe

    Extending Greenstone for Institutional Repositories

    Get PDF
    We examine the problem of designing a generalized system for building institutional repositories. Widely used schemes such as DSpace are tailored to a particular set of requirements: fixed metadata set; standard view when searching and browsing; pre-determined sequence for depositing items; built-in workflow for vetting new items. In contrast, Fedora builds in flexibility: institutional repositories are just one possible instantiation—however generality incurs a high overhead and uptake has been sluggish. This paper shows how existing components of the Greenstone software can be repurposed to provide a generalized institutional repository that falls between these extremes

    Renormalization Group and Infinite Algebraic Structure in D-Dimensional Conformal Field Theory

    Full text link
    We consider scalar field theory in the D-dimensional space with nontrivial metric and local action functional of most general form. It is possible to construct for this model a generalization of renormalization procedure and RG-equations. In the fixed point the diffeomorphism and Weyl transformations generate an infinite algebraic structure of D-Dimensional conformal field theory models. The Wilson expansion and crossing symmetry enable to obtain sum rules for dimensions of composite operators and Wilson coefficients.Comment: 16 page

    Conformal anomaly of Wilson surface observables - a field theoretical computation

    Full text link
    We make an exact field theoretical computation of the conformal anomaly for two-dimensional submanifold observables. By including a scalar field in the definition for the Wilson surface, as appropriate for a spontaneously broken A_1 theory, we get a conformal anomaly which is such that N times it is equal to the anomaly that was computed in hep-th/9901021 in the large N limit and which relied on the AdS-CFT correspondence. We also show how the spherical surface observable can be expressed as a conformal anomaly.Comment: 18 pages, V3: an `i' dropped in the Wilson surface, overall normalization and misprints corrected, V4: overall normalization factor corrected, references adde

    Dirac eigenvalues and eigenvectors at finite temperature

    Full text link
    We investigate the eigenvalues and eigenvectors of the staggered Dirac operator in the vicinity of the chiral phase transition of quenched SU(3) lattice gauge theory. We consider both the global features of the spectrum and the local correlations. In the chirally symmetric phase, the local correlations in the bulk of the spectrum are still described by random matrix theory, and we investigate the dependence of the bulk Thouless energy on the simulation parameters. At and above the critical point, the properties of the low-lying Dirac eigenvalues depend on the Z3Z_3-phase of the Polyakov loop. In the real phase, they are no longer described by chiral random matrix theory. We also investigate the localization properties of the Dirac eigenvectors in the different Z3Z_3-phases.Comment: Lattice 2000 (Finite Temperature), 5 page

    Microscopic eigenvalue correlations in QCD with imaginary isospin chemical potential

    Full text link
    We consider the chiral limit of QCD subjected to an imaginary isospin chemical potential. In the epsilon-regime of the theory we can perform precise analytical calculations based on the zero-momentum Goldstone modes in the low-energy effective theory. We present results for the spectral correlation functions of the associated Dirac operators.Comment: 13 pages, 2 figures, RevTe

    The 13 November 1984 occultation of BD +08 deg 0471 by (1) Ceres

    Get PDF
    The 13 November 1984 occultation of BD +08 deg 0471 was discovered during a photographic search carried out with the 0.5 meter Carnegie Double Astrograph at Lick Observatory and the Lowell Observatory PDS microdensitometer. Such a search was stimulated by the curious fact that few favorably located occultations of AGK3 or SAO catalog starts by Ceres will occur during the 1980s. The occultation on 13 November, however, is a particularly good event. The star is 1000 cubic M in V, yielding a predicted drop at occultation of about 10%. Such a drop can be detected by small telescopes equipped with photoelectric photometers, but is too small to be seen visually. The track was predicted to cross the Caribbean, Florida, southern Texas, and Mexico. Based on this prediction, preparations were made to observe the event in Mexico using four portable occultation data systems

    Stochastic field theory for a Dirac particle propagating in gauge field disorder

    Get PDF
    Recent theoretical and numerical developments show analogies between quantum chromodynamics (QCD) and disordered systems in condensed matter physics. We study the spectral fluctuations of a Dirac particle propagating in a finite four dimensional box in the presence of gauge fields. We construct a model which combines Efetov's approach to disordered systems with the principles of chiral symmetry and QCD. To this end, the gauge fields are replaced with a stochastic white noise potential, the gauge field disorder. Effective supersymmetric non-linear sigma-models are obtained. Spontaneous breaking of supersymmetry is found. We rigorously derive the equivalent of the Thouless energy in QCD. Connections to other low-energy effective theories, in particular the Nambu-Jona-Lasinio model and chiral perturbation theory, are found.Comment: 4 pages, 1 figur

    Spectrum of the U(1) staggered Dirac operator in four dimensions

    Get PDF
    We compare the low-lying spectrum of the staggered Dirac operator in the confining phase of compact U(1) gauge theory on the lattice to predictions of chiral random matrix theory. The small eigenvalues contribute to the chiral condensate similar as for the SU(2) and SU(3) gauge groups. Agreement with the chiral unitary ensemble is observed below the Thouless energy, which is extracted from the data and found to scale with the lattice size according to theoretical predictions.Comment: 5 pages, 3 figure
    corecore