Abstract

We investigate the eigenvalues and eigenvectors of the staggered Dirac operator in the vicinity of the chiral phase transition of quenched SU(3) lattice gauge theory. We consider both the global features of the spectrum and the local correlations. In the chirally symmetric phase, the local correlations in the bulk of the spectrum are still described by random matrix theory, and we investigate the dependence of the bulk Thouless energy on the simulation parameters. At and above the critical point, the properties of the low-lying Dirac eigenvalues depend on the Z3Z_3-phase of the Polyakov loop. In the real phase, they are no longer described by chiral random matrix theory. We also investigate the localization properties of the Dirac eigenvectors in the different Z3Z_3-phases.Comment: Lattice 2000 (Finite Temperature), 5 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019