2,439 research outputs found

    Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence

    Get PDF
    Linear two-coordinate copper complexes of cyclic (alkyl)(amino)-carbenes (CAAC)CuX (X = halide) show photoluminescence with solid-state quantum yields of up to 96%; in contrast to previously reported Cu photoemitters the emission is independent of temperature over the range T = 4 – 300 K and occurs very efficiently by prompt rather than delayed fluorescence, with lifetimes in the sub-nanosecond range

    The Effect of Carboxyl-terminal Mutagenesis of G on Rhodopsin and Guanine Nucleotide Binding

    Get PDF
    The carboxyl terminus of G protein alpha subunits plays an important role in receptor recognition. To identify the amino acids that participate in this interaction, COOH-terminal mutants of alpha t (the transducin alpha subunit) were expressed in vitro and analyzed for their ability to interact with rhodopsin and to bind guanine nucleotide. Gly-348, the reported site of a beta turn, was replaced with other neutral amino acids without severely affecting rhodopsin binding. However, proline substitution abolished rhodopsin interaction, suggesting that flexibility is important at this site. A comparison between C347Y, which lost both rhodopsin and guanine nucleotide binding, and a mutant substituted with alpha q sequence (D346E/C347Y/G348N/F350V), in which guanine nucleotide binding was restored, implies that distinct motifs maintain the structure of the alpha subunit and are necessary for selective interaction with receptors. Surprisingly, mutants L344A, L349A, F350stop, and stop351A demonstrated a parallel loss of rhodopsin and guanine nucleotide binding. Altered profiles of L344A and F350stop on sucrose density gradients indicate that these mutants may undergo denaturation. The equivalent of alpha tL344A generated in alpha s and alpha i did not show such a severe loss of guanine nucleotide binding, revealing that the alpha t carboxyl terminus is unique in its susceptibility to changes in amino acid sequence

    Surface Geometry of C60 on Ag(111)

    Get PDF
    The geometry of adsorbed C60 influences its collective properties. We report the first dynamical low-energy electron diffraction study to determine the geometry of a C60 monolayer, Ag(111)-(23×23)30°-C60, and related density functional theory calculations. The stable monolayer has C60 molecules in vacancies that result from the displacement of surface atoms. C60 bonds with hexagons down, with their mirror planes parallel to that of the substrate. The results indicate that vacancy structures are the rule rather than the exception for C60 monolayers on close-packed metal surfaces. © 2009 The American Physical Society

    New results on GP Com

    Full text link
    We present high resolution optical and UV spectra of the 46 min orbital period, helium binary, GP Com. Our data contains simultaneous photometric correction which confirms the flaring behaviour observed in previous optical and UV data. In this system all lines show a triple peaked structure where the outer two peaks are associated with the accretion disc around the compact object. The main aim of this paper is to constrain the origin of the central peak, also called ``central spike''. We find that the central spike contributes to the flare spectra indicating that its origin is probably the compact object. We also detect that the central spike moves with orbital phase following an S-wave pattern. The radial velocity semiamplitude of the S-wave is ~10 km/s indicating that its origin is near the centre of mass of the system, which in this case lies very close to the white dwarf. Our resolution is higher than that of previous data which allows us to resolve structure in the central peak of the line. The central spike in three of the HeI lines shows another peak blueshifted with respect to the main peak. We propose that one of the peaks is a neutral helium forbidden transition excited in a high electron density region. This forbidden transition is associated with the permitted one (the stronger peak in two of the lines). The presence of a high electron density region again favours the white dwarf as their origin.Comment: 14 pages, 16 figures. Accepted for publication in A&

    Replication Study of Candidate Genes Associated With Type 2 Diabetes Based On Genome-Wide Screening

    Get PDF
    OBJECTIVE—The present study was conducted to confirm possible associations between candidate genes from genome-wide association studies and type 2 diabetes in Japanese diabetic patients and a community-based general population. A total of 11 previously reported single-nucleotide polymorphisms (SNPs) from the TCF7L2, CDKAL1, HHEX, IGF2BP2, CDKN2A/B, SLC30A8, and KCNJ11 genes were analyzed

    The Patterns of High-Level Magnetic Activity Occurring on the Surface of V1285 Aql: The OPEA Model of Flares and DFT Models of Stellar Spots

    Full text link
    Statistically analyzing Johnson UBVR observations of V1285 Aql during the three observing seasons, both activity level and behavior of the star are discussed in respect to obtained results. We also discuss the out-of-flare variation due to rotational modulation. Eighty-three flares were detected in the U-band observations of season 2006 . First, depending on statistical analyses using the independent samples t-test, the flares were divided into two classes as the fast and the slow flares. According to the results of the test, there is a difference of about 73 s between the flare-equivalent durations of slow and fast flares. The difference should be the difference mentioned in the theoretical models. Second, using the one-phase exponential association function, the distribution of the flare-equivalent durations versus the flare total durations was modeled. Analyzing the model, some parameters such as plateau, half-life values, mean average of the flare-equivalent durations, maximum flare rise, and total duration times are derived. The plateau value, which is an indicator of the saturation level of white-light flares, was derived as 2.421{\pm}0.058 s in this model, while half-life is computed as 201 s. Analyses showed that observed maximum value of flare total duration is 4641 s, while observed maximum flare rise time is 1817 s. According to these results, although computed energies of the flares occurring on the surface of V1285 Aql are generally lower than those of other stars, the length of its flaring loop can be higher than those of more active stars.Comment: 44 pages, 10 figures, 5 tables, 2011PASP..123..659

    Phosphorylation of GRK7 by PKA in cone photoreceptor cells is regulated by light

    Get PDF
    The retina specific G protein-coupled receptor kinases, GRK1 and GRK7, have been implicated in the shutoff of the photoresponse and adaptation to changing light conditions via rod and cone opsin phosphorylation. Recently, we have defined sites of phosphorylation by cAMP-dependent protein kinase (PKA) in the amino termini of both GRK1 and GRK7 in vitro. To determine the conditions under which GRK7 is phosphorylated in vivo, we have generated an antibody that recognizes GRK7 phosphorylated on Ser-36, the PKA phosphorylation site. Using this phospho-specific antibody, we have shown that GRK7 is phosphorylated in vivo and is located in the cone inner and outer segments of mammalian, amphibian and fish retinas. Using Xenopus laevis as a model, GRK7 is phosphorylated under dark-adapted conditions, but becomes dephosphorylated when the animals are exposed to light. The conservation of phosphorylation at Ser-36 in GRK7 in these different species (which span a 400 million-year evolutionary period), and its light-dependent regulation, indicate that phosphorylation plays an important role in the function of GRK7. Our work demonstrates for the first time that cAMP can regulate proteins involved in the photoresponse in cones and introduces a novel mode of regulation for the retinal GRKs by PKA

    Guest Editorial: Social and human aspects of cyber-physical systems

    Get PDF
    open6siIn the vision of Industry 4.0, the new industrial revolution is a revolution of cyber-physical systems, of which the Internet of Things forms a key foundation that has a great impact on the way people live, and the way businesses are organised. Cyber-physical systems are often considered feedback systems that integrate computation, networking, and physical processes, and more recently with ‘human-in-the-loop’ as one of the key research topics. The advances in social computing have connected human-inthe-loop in cyber-social systems such as Facebook and Twitter, while their social-physical activities are supported by the cyberphysical systems on or near their bodies and in their interconnected environments. Cyber-physical systems become an integral part of social-cyber-physical systems (SCPS) that weave into the sociotechnical fabric of human society. These hybrid systems, exhibiting both continuous (in physical and social spaces) and discrete (in cyberspaces) dynamic behaviour, give rise to not only new opportunities but also new challenges in designing products and services where human and technical aspects are massively intertwined. This Special Issue aims to present state-of-the-art research attempts and results on the topic of SCPS.openopenHu J.; Liang R.-H.; Shih C.-S.; Catala A.; Marcenaro L.; Osawa H.Hu, J.; Liang, R. -H.; Shih, C. -S.; CATALA MALLOFRE, Andreu; Marcenaro, L.; Osawa, H

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo
    corecore