66 research outputs found

    Diabetes and hypertension markedly increased the risk of ischemic stroke associated with high serum resistin concentration in a general Japanese population: the Hisayama Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistin, secreted from adipocytes, causes insulin resistance in mice. The relationship between resistin and coronary artery disease is highly controversial, and the information regarding resistin and ischemic stroke is limited. In the present study, the association between serum resistin concentration and cardiovascular disease (CVD) was investigated in a general Japanese population.</p> <p>Methods</p> <p>A total of 3,201 community-dwelling individuals aged 40 years or older (1,382 men and 1,819 women) were divided into quintiles of serum resistin, and the association between resistin and CVD was examined cross-sectionally. The combined effect of either diabetes or hypertension and high serum resistin was also assessed. Serum resistin was measured using ELISA.</p> <p>Results</p> <p>Compared to those without CVD, age- and sex-adjusted mean serum resistin concentrations were greater in subjects with CVD (p = 0.002) or ischemic stroke (p < 0.001), especially in those with lacunar and atherothrombotic infarction, but not elevated in subjects with hemorrhagic stroke or coronary heart disease. When analyzed by quintile of serum resistin concentration, the age- and sex-adjusted odds ratio (OR) for having CVD and ischemic stroke increased with quintile of serum resistin (p for trends, 0.02 for CVD, < 0.001 for ischemic stroke), while such associations were not observed for hemorrhagic stroke or coronary heart disease. Compared to the first quintile, the age- and sex-adjusted OR of ischemic stroke was greater in the third (OR = 3.54; 95% confidence interval [CI], 1.17-10.67; p = 0.02), fourth (OR = 4.48; 95% CI, 1.53-13.09; p = 0.006), and fifth quintiles (OR = 4.70; 95% CI, 1.62-13.61; p = 0.004). These associations remained substantially unchanged even after adjustment for other confounding factors including high-sensitivity C-reactive protein. In the stratified analysis, the combination of high serum resistin and either diabetes or hypertension markedly increased the risk of ischemic stroke.</p> <p>Conclusion</p> <p>Elevated serum resistin concentration appears to be an independent risk factor for ischemic stroke, especially lacunar and atherothrombotic infarction in the general Japanese population. The combination of high resistin and the presence of either diabetes or hypertension increased the risk of ischemic stroke.</p

    Glycemic Control and Insulin Improve Muscle Mass and Gait Speed in Type 2 Diabetes: The MUSCLES-DM Study

    Get PDF
    Ken Sugimoto, Hiroshi Ikegami, Yasunori Takata, Tomohiro Katsuya, Masahiro Fukuda, Hiroshi Akasaka, Yasuharu Tabara, Haruhiko Osawa, Yoshihisa Hiromine, Hiromi Rakugi, Glycemic Control and Insulin Improve Muscle Mass and Gait Speed in Type 2 Diabetes: The MUSCLES-DM Study, Journal of the American Medical Directors Association, 2020, https://doi.org/10.1016/j.jamda.2020.11.003

    Insulin receptor cleavage induced by estrogen impairs insulin signaling

    Get PDF
    Introduction: Soluble insulin receptor (sIR), which is the ectodomain of insulin receptor (IR), is present in human plasma. Plasma sIR levels are positively correlated with blood glucose levels and negatively correlated with insulin sensitivity. An in vitro model of IR cleavage shows that extracellular calpain 2 directly cleaves IR, which generates sIR, and sequential cleavage of the IRβ subunit by γ-secretase impairs insulin signaling in a glucose concentration-dependent manner. Nevertheless, sIR levels vary among subjects with normal glucose levels. Research design and methods: We examined sIR levels of pregnant women throughout gestation. Using an in vitro model, we also investigated the molecular mechanisms of IR cleavage induced by estradiol. Results: In pregnant women, sIR levels were positively correlated with estrogen levels and significantly increased at late pregnancy independent of glucose levels. Using an in vitro model, estrogen elicited IR cleavage and impaired cellular insulin signaling. Estradiol-induced IR cleavage was inhibited by targeting of calpain 2 and γ-secretase. Estrogen exerted these biological effects via G protein-coupled estrogen receptor, and its selective ligand upregulated calpain 2 expression and promoted exosome secretion, which significantly increased extracellular calpain 2. Simultaneous stimulation of estrogen and high glucose levels had a synergic effect on IR cleavage. Metformin prevented calpain 2 release in exosomes and restored insulin signaling impaired by estrogen. Conclusions: Estradiol-induced IR cleavage causes cellular insulin resistance, and its molecular mechanisms are shared with those by high glucose levels. sIR levels at late pregnancy are significantly elevated along with estrogen levels. Therefore, estradiol-induced IR cleavage is preserved in pregnant women and could be part of the etiology of insulin resistance in gestational diabetes mellitus and overt diabetes during pregnancy

    A at Single Nucleotide Polymorphism-358 Is Required for G at -420 to Confer the Highest Plasma Resistin in the General Japanese Population

    Get PDF
    Insulin resistance is a feature of type 2 diabetes. Resistin, secreted from adipocytes, causes insulin resistance in mice. We previously reported that the G/G genotype of single nucleotide polymorphism (SNP) at −420 (rs1862513) in the human resistin gene (RETN) increased susceptibility to type 2 diabetes by enhancing its promoter activity. Plasma resistin was highest in Japanese subjects with G/G genotype, followed by C/G, and C/C. In this study, we cross-sectionally analyzed plasma resistin and SNPs in the RETN region in 2,019 community-dwelling Japanese subjects. Plasma resistin was associated with SNP-638 (rs34861192), SNP-537 (rs34124816), SNP-420, SNP-358 (rs3219175), SNP+299 (rs3745367), and SNP+1263 (rs3745369) (P<10−13 in all cases). SNP-638, SNP -420, SNP-358, and SNP+157 were in the same linkage disequilibrium (LD) block. SNP-358 and SNP-638 were nearly in complete LD (r2 = 0.98), and were tightly correlated with SNP-420 (r2 = 0.50, and 0.51, respectively). The correlation between either SNP-358 (or SNP-638) or SNP-420 and plasma resistin appeared to be strong (risk alleles for high plasma resistin; A at SNP-358, r2 = 0.5224, P = 4.94×10−324; G at SNP-420, r2 = 0.2616, P = 1.71×10−133). In haplotypes determined by SNP-420 and SNP-358, the estimated frequencies for C-G, G-A, and G-G were 0.6700, 0.2005, and 0.1284, respectively, and C-A was rare (0.0011), suggesting that subjects with A at −358, generally had G at −420. This G-A haplotype conferred the highest plasma resistin (8.24 ng/ml difference/allele compared to C-G, P<0.0001). In THP-1 cells, the RETN promoter with the G-A haplotype showed the highest activity. Nuclear proteins specifically recognized one base difference at SNP-358, but not at SNP-638. Therefore, A at -358 is required for G at −420 to confer the highest plasma resistin in the general Japanese population. In Caucasians, the association between SNP-420 and plasma resistin is not strong, and A at −358 may not exist, suggesting that SNP-358 could explain this ethnic difference

    Prevalence and Outcomes of Acute Hepatitis B in Okayama, Japan, 2006-2010

    Get PDF
    Hepatitis B virus (HBV) is one of the major viruses causing acute hepatitis. Recently, the incidence of acute hepatitis with genotype A has been increasing in Japan. The aim of this study was to investigate acute hepatitis B (AHB) in Okayama prefecture, with special attention to HBV genotype A. AHB patients who visited one of 12 general hospitals in Okayama prefecture between 2006 and 2010 were retrospectively analyzed. Over the course of the study period, 128 patients were diagnosed with AHB. Sexual transmission was supposed in the majority of patients (78 patients, 61%), including 59 (76%) having sex with heterosexual partners. The genotypes of HBV were assessed in 90 patients (70%), of whom 27 patients were infected with genotype A, 5 with genotype B, and 58 with genotype C. The prevalence of genotype A was significantly higher among male patients (28.7%), aged 20-29 (35.6%, p<0.01), among men who had sex with men (100%, p<0.005), and among patients having sex with unspecified partners (44.8%, p<0.005). Genotype A was not a significant factor associated with delayed HBsAg disappearance. Caution should be exercised with regard to sexually transmissible diseases in order to slow the pandemic spread of AHB due to genotype A

    Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus

    Get PDF
    AIMS/INTRODUCTION: Hyperglycemia is a risk factor for sarcopenia when comparing individuals with and without diabetes. However, no studies have investigated whether the findings could be extrapolated to patients with diabetes with relatively higher glycemic levels. Here, we aimed to clarify whether glycemic control was associated with sarcopenia in patients with type 2 diabetes. MATERIALS AND METHODS: Study participants consisted of patients with type 2 diabetes (n = 746, the average age was 69.9 years) and an older general population (n = 2, 067, the average age was 68.2 years). Sarcopenia was defined as weak grip strength or slow usual gait speed and low skeletal mass index. RESULTS: Among patients with type 2 diabetes, 52 were diagnosed as having sarcopenia. The frequency of sarcopenia increased linearly with glycated hemoglobin (HbA1c) level, particularly in lean individuals (HbA1c <6.5%, 7.0%, ≥6.5% and <7.0%: 18.5%; HbA1c ≥7.0% and <8.0%: 20.3%; HbA1c ≥8.0%: 26.7%). The linear association was independent of major covariates, including anthropometric factors and duration of diabetes (HbA1c <6.5%: reference; ≥6.5% and <7.0%: odds ratio [OR] 4.38, P = 0.030; HbA1c ≥7.0% and <8.0%: 4.29, P = 0.024; HbA1c ≥8.0%: 7.82, P = 0.003). HbA1c level was specifically associated with low skeletal mass index (HbA1c ≥8.0%: OR 5.42, P < 0.001) rather than weak grip strength (OR 1.89, P = 0.058) or slow gait speed (OR 1.13, P = 0.672). No significant association was observed in the general population with a better glycemic profile. CONCLUSIONS: Poor glycemic control in patients with diabetes was associated with low muscle mass

    Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus

    Get PDF
    Type 1 diabetes is a disease characterized by destruction of pancreatic β-cells, which leads to absolute deficiency of insulin secretion. Depending on the manner of onset and progression, it is classified as fulminant, acute-onset or slowly progressive type 1 diabetes. Here, we propose the diagnostic criteria for acute-onset type 1 diabetes mellitus. Among the patients who develop ketosis or diabetic ketoacidosis within 3 months after the onset of hyperglycemic symptoms and require insulin treatment continuously after the diagnosis of diabetes, those with anti-islet autoantibodies are diagnosed with \u27acute-onset type 1 diabetes mellitus (autoimmune)\u27. In contrast, those whose endogenous insulin secretion is exhausted (fasting serum C-peptide immunoreactivity <0.6 ng/mL) without verifiable anti-islet autoantibodies are diagnosed simply with \u27acute-onset type 1 diabetes mellitus\u27. Patients should be reevaluated after certain periods in case their statuses of anti-islet autoantibodies and/or endogenous insulin secretory capacity are unknown

    Bmi1 Confers Resistance to Oxidative Stress on Hematopoietic Stem Cells

    Get PDF
    The polycomb-group (PcG) proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC) 1, maintained self-renewing hematopoietic stem cells (HSCs) during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed.In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FL)Bmi1). Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FL)Bmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS).Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it

    A meta-analysis of genome-wide association studies for adiponectin levels in East Asians identifies a novel locus near WDR11-FGFR2

    Get PDF
    Blood levels of adiponectin, an adipocyte-secreted protein correlated with metabolic and cardiovascular risks, are highly heritable. Genome-wide association (GWA) studies for adiponectin levels have identified 14 loci harboring variants associated with blood levels of adiponectin. To identify novel adiponectin-associated loci, particularly those of importance in East Asians, we conducted a meta-analysis of GWA studies for adiponectin in 7827 individuals, followed by two stages of replications in 4298 and 5954 additional individuals. We identified a novel adiponectin-associated locus on chromosome 10 near WDR11-FGFR2 (P = 3.0 × 10−14) and provided suggestive evidence for a locus on chromosome 12 near OR8S1-LALBA (P = 1.2 × 10−7). Of the adiponectin-associated loci previously described, we confirmed the association at CDH13 (P = 6.8 × 10−165), ADIPOQ (P = 1.8 × 10−22), PEPD (P = 3.6 × 10−12), CMIP (P = 2.1 × 10−10), ZNF664 (P = 2.3 × 10−7) and GPR109A (P = 7.4 × 10−6). Conditional analysis at ADIPOQ revealed a second signal with suggestive evidence of association only after conditioning on the lead SNP (Pinitial = 0.020; Pconditional = 7.0 × 10−7). We further confirmed the independence of two pairs of closely located loci (<2 Mb) on chromosome 16 at CMIP and CDH13, and on chromosome 12 at GPR109A and ZNF664. In addition, the newly identified signal near WDR11-FGFR2 exhibited evidence of association with triglycerides (P = 3.3 × 10−4), high density lipoprotein cholesterol (HDL-C, P = 4.9 × 10−4) and body mass index (BMI)-adjusted waist–hip ratio (P = 9.8 × 10−3). These findings improve our knowledge of the genetic basis of adiponectin variation, demonstrate the shared allelic architecture for adiponectin with lipids and central obesity and motivate further studies of underlying mechanisms

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore