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Blood levels of adiponectin, an adipocyte-secreted protein correlated with metabolic and cardiovascular risks,
are highly heritable. Genome-wide association (GWA) studies for adiponectin levels have identified 14 loci har-
boring variants associated with blood levels of adiponectin. To identify novel adiponectin-associated loci, par-
ticularly those of importance in East Asians, we conducted a meta-analysis of GWA studies for adiponectin in
7827 individuals, followed by two stages of replications in 4298 and 5954 additional individuals. We identified
a novel adiponectin-associated locus on chromosome 10 near WDR11-FGFR2 (P 5 3.0 3 10214) and provided
suggestive evidence for a locus on chromosome 12 near OR8S1-LALBA (P 5 1.2 3 1027). Of the adiponectin-
associated loci previously described, we confirmed the association at CDH13 (P 5 6.8 3 102165), ADIPOQ
(P 5 1.8 3 10222), PEPD (P 5 3.6 3 10212), CMIP (P 5 2.1 3 10210), ZNF664 (P 5 2.3 3 1027) and GPR109A
(P 5 7.4 3 1026). Conditional analysis at ADIPOQ revealed a second signal with suggestive evidence of associ-
ation only after conditioning on the lead SNP (Pinitial 5 0.020; Pconditional 5 7.0 3 1027). We further confirmed the
independence of two pairs of closely located loci (<2 Mb) on chromosome 16 at CMIP and CDH13, and on
chromosome 12 at GPR109A and ZNF664. In addition, the newly identified signal near WDR11-FGFR2 exhibited
evidence of association with triglycerides (P 5 3.3 3 1024), high density lipoprotein cholesterol (HDL-C,
P 5 4.9 3 1024) and body mass index (BMI)-adjusted waist–hip ratio (P 5 9.8 3 1023). These findings improve
our knowledge of the genetic basis of adiponectin variation, demonstrate the shared allelic architecture for
adiponectin with lipids and central obesity and motivate further studies of underlying mechanisms.

INTRODUCTION

Adiponectin is an adipocyte-secreted protein and blood adipo-
nectin levels are positively associated with high density lipopro-
tein cholesterol (HDL-C) concentration and negatively
correlated with the risk of type 2 diabetes (T2D), glucose,
insulin, insulin resistance, triglycerides and anthropometric
measures of obesity (1–3). Twins and family studies demon-
strated an estimated 30–70% heritability for circulating adipo-
nectin levels (4–6). A recent multi-ethnic meta-analysis of
genome wide association (GWA) studies, including �40 000
Europeans, �4200 African Americans and �1800 East
Asians, identified 10 novel loci associated with adiponectin
levels (7), in addition to the previously reported ADIPOQ,
CDH13, ARL15 and FER (8–14). A multi-SNP genotype risk
score that accounted for 5% of the variance of adiponectin
levels exhibited significant association with T2D and markers
of insulin resistance, suggesting a shared allelic architecture of
adiponectin and other metabolic traits (7).

To date, only variants at CDH13 and ADIPOQ exhibited
significant association at P , 5 × 1028 in studies of Asians
(11,12,14,15). Large-scale meta-analysis of these and other
GWA studies should increase the statistical power to detect
and confirm additional loci. The CDH13 signal that was initially
identified in Asians and had a consistently stronger genetic effect

in this population than in Europeans suggested that the genetic
contributions may differ across populations (7,11,12,15).

Meta-analyses of GWA studies in East Asians for T2D, body

mass index (BMI), blood pressure and other metabolic traits

have identified novel loci that show Asian-specific associations

either due to differences in allele frequencies or due to genuine

heterogeneity of genetic effects across continental populations

(16–20).
Allelic heterogeneity is frequently observed in large genetic

association studies (21–23). A deep resequencing of ADIPOQ
in Europeans revealed seven variants exerting independent
effects on the adiponectin level (24). A previous GWA study
for adiponectin in Koreans suggested the existence of two
signals at CDH13, but did not evaluate their independence
(12). Two pairs of adiponectin loci are located ,2 Mb apart, in-
cluding CDH13 and CMIP at 16q23.2–23.3 and GPR109A and
ZNF664 at 12q24.31; however, it is unclear whether these two
nearby loci are independent of each other. Although a physical
distance is frequently used to define independent signals,
genomic regions have been reported with LD that extended
.1 Mb (25,26). These findings motivated our analysis of
closely co-localized adiponectin loci to evaluate independence.

We carried out the first meta-analysis of GWA studies for
adiponectin in East Asians of the Asian Genetic Epidemiology
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Network (AGEN). We aimed to identify novel adiponectin-asso-
ciated variants/loci, evaluate whether previously identified loci
are shared across ancestries and investigate the allelic heterogen-
eity at these loci, as well as the independence of the associations
for SNPs at nearby loci. We further characterized novel loci by
evaluating evidence of association with obesity and lipid traits
in East Asians and Europeans.

RESULTS

The meta-analysis included three stages, including GWA
discovery and two stages of follow-up of selected SNPs (Supple-
mentary Material, Fig. S1). Descriptions of collection, pheno-
typing and genotyping for study samples in each participating
cohort are shown in the Supplementary Material, text and
Table S1. The results of meta-analyses using the inverse-
variance weighted and sample size-weighted meta-analysis
methods were similar. No substantial difference was observed
in results analyzed from Models 1 and 2, with or without the
adjustment for BMI. We showed results based on Model 1 that
accounted for BMI and meta-analyzed using an inverse-variance
weighted method.

Stage 1 GWA discovery

The meta-analysis of seven GWA studies including 7827 East
Asians in discovery stage revealed three loci significantly asso-
ciated with the adiponectin level at P , 5.0 × 1028 (Table 1,
Supplementary Material, Fig. S2). These loci included the previ-
ously described CDH13 (rs4783244, P ¼ 2.0 × 102104) and
ADIPOQ (rs10937273, P ¼ 1.1 × 10222), and a novel signal
on chromosome 10, �300 kb from WDR11 and �300 kb from
FGFR2 (rs3943077, P ¼ 1.2 × 1029) (Table 1). Our data also
showed suggestive evidence of association (P , 1024) for four
novel signals at KCNH8 (rs12714975, P ¼ 1.2 × 1026),
OR8S1-LALBA (rs11168618, P ¼ 1.7 × 1025), HIVEP2
(rs12211360, P ¼ 1.0 × 1025) and GAL3ST1 (rs6518702, P ¼
4.5 × 1025). In addition, the signals previously reported in Eur-
opeans at CMIP, PEPD, ZNF664, GPR109A and IRS1 also exhib-
ited suggestive association with adiponectin at P , 1024 in East
Asians (Table 1). The AGEN evidence of adiponectin association
at other previously reported loci are described in Supplementary
Material, Table S2. Furthermore, we did not observe evidence of
sex-specific signals at P , 5 × 1028, and all P-values for hetero-
geneity between sexes were . 1026 (uncorrected for multiple
testing). All loci associated with the adiponectin level in the
sex-combined analysis and all loci previously reported in other
populations exhibited P for heterogeneity .0.02 in East Asians
(Supplementary Material, Table S3).

Stage 2 in silico follow-up

A total of 115 SNPs exhibiting genome-wide significant or sug-
gestive association (P , 1024) in Stage 1 were tested for associ-
ation with adiponectin level in three additional cohorts including
up to 4298 individuals (Table 1). The meta-analysis of 10 cohorts
consisting of 12 125 East Asians in combined Stages 1 and 2
confirmed the novel adiponectin locus near WDR11-FGFR2
(P ¼ 1.8 × 10213). Four loci KCNH8, OR8S1-LALBA,

HIVEP2 and GAL3ST1 that exhibited association at P , 1024

in Stage 1 also provided suggestive evidence of association in
Stages 1 and 2 combined analysis with P-values between
2.8 × 1027 and 7.6 × 1026. In addition to CDH13 and
ADIPOQ, associations for SNPs at the previously reported
PEPD (rs889140, P ¼ 3.6 × 10212) and CMIP (rs2925979,
P ¼ 2.1 × 10210) loci reached genome-wide significance in
Stages 1 and 2 combined meta-analysis. We also observed asso-
ciations for SNPs at ZNF664 (rs1187415, P ¼ 2.3 × 1027) and
GPR109A (rs10847980, P ¼ 7.4 × 1026), whereas little
evidence of association was observed at IRS1 (P ¼ 1.4 × 1023).

Stage 3 further follow-up

To further examine the possible novel signals that exhibited
genome-wide significant or suggestive evidence of association
in Stages 1 and 2 combined meta-analysis (P , 1025), five
SNPs were investigated in four additional cohorts including up
to 5954 individuals (Table 1). The meta-analysis combining all
14 cohorts including 18 079 individuals in the discovery and
two follow-up stages provided additional evidence for the
signal near WDR11-FGFR2 which had already achieved
genome-wide significance in Stages 1 and 2 (P ¼ 3.0 × 10214,
Fig. 1A). The data also provided supporting yet still suggestive
evidence of another locus near OR8S1-LALBA, which did not
reach but approximated to the genome-wide significance (P ¼
1.2 × 1027) (Fig. 1B). However, the Stages 1, 2 and 3 combined
meta-analysis did not strongly support the association at
HIVEP2, GAL3ST1 and KCNH8, which showed less evidence
of association despite an increased statistical power when
additional subjects were included in the analysis (Table 1).

Conditional analysis

To explore the presence of additional signals at adiponectin-
associated loci, we performed conditional analyses at
WDR11-FGFR2, ADIPOQ, GPR109A, ZNF664, CDH13, CMIP
and PEPD loci by conditioning on the lead SNP at each of the
seven loci and testing the residual association with all remaining
SNPs within+500 kb flanking regions of the lead SNPs. We
also carried out conditional analyses to evaluate independence of
the association for signals at two pairs of closely located
(,2 Mb) loci, GPR109A and ZNF664 on 12q24.31, and at
CMIP and CDH13 on 16q23.2-23.3. Meta-analysis of the seven
cohorts in Stage 1 revealed a second signal near ADIPOQ exhibit-
ing suggestive evidence of association only after conditioning on
the lead SNP rs10937273 (EIF4A2-rs266719: Pinitial¼ 0.020,
Pconditional¼ 7.0 × 1027; Table 2, Supplementary Material, Fig.
S3). The other six loci each had only one signal (Pconditional .
1024) within the +500 kb flanking region of the index SNPs.
We next performed conditional analysis on the 2 Mb genomic
region (chr12: 121.4–123.4 Mb) that included GPR109A and
ZNF664. When we conditioned on ZNF664 rs1187415, the
second best signal in this region was rs10847980 near GPR109A,
with no reduction of association in both magnitude and significance
(Table 2, Supplementary Material, Fig. S4A and B). In reciprocal
conditional analysis accounting for GPR109A rs10847980, the
effect size and P-value of association for rs1187415 did not
change (Table 2, Supplementary Material, Fig. S4A and C).
When both rs1187415 and rs10847980 were included in
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Table 1. Loci associated with adiponectin

Locus/ nearby gene Index SNP Chr Position
(hg18)

Effect/
non-effect
alleles

Stage 1 (n ¼ 7827) Stages 1 + 2 (n ¼ 12 125) Stages 1 + 2 + 3
(n ¼ 18 079)

Directionb

EAFa b (SE) P b (SE) P Beta (SE) P

Novel locus exhibiting GWA with adiponectin
WDR11-FGFR2 rs3943077 10 122 935 076 A/G 0.567 0.09 (0.02) 1.2E209 0.09 (0.01) 1.8E213 0.07 (0.01) 3.0E-14 +++++++++++++2

Loci exhibiting suggestive association with adiponectin
OR8S1-LALBA rs11168618 12 47 219 500 T/C 0.137 20.10 (0.02) 1.7E205 -0.08 (0.02) 1.1E206 20.06 (0.01) 1.2E207 22+2222222222+
HIVEP2 rs12211360 6 143 161 525 A/G 0.966 20.21 (0.05) 1.0E–05 20.21 (0.04) 2.8E207 20.16 (0.03) 5.5E206 222?222?22+22+
KCNH8 rs12714975 3 19 060 378 C/G 0.047 0.21 (0.04) 1.2E206 0.16 (0.04) 7.6E206 0.12 (0.03) 8.9E205 ++++2++++222++
GAL3ST1 rs6518702 22 29 278 752 T/C 0.249 20.08 (0.02) 4.5E205 20.06 (0.01) 5.2E206 20.04 (0.01) 5.3E204 22222222+2++22

Known loci with previous evidence of association with adiponectin (P , 1024 in stage 1)
CDH13 rs4783244 16 81 219 769 T/G 0.360 20.34 (0.02) 2.0E2104 20.33 (0.01) 6.8E2165 n.a. n.a. 2222222222

ADIPOQ rs10937273 3 188 032 389 A/G 0.404 0.15 (0.02) 1.1E222 0.12 (0.01) 1.8E222 n.a. n.a. ++++++++++
PEPD rs889140 19 38 580 840 A/G 0.450 0.07 (0.02) 8.4E206 0.08 (0.01) 3.6E212 n.a. n.a. ++2+++++++
CMIP rs2925979 16 80 092 291 T/C 0.411 20.07 (0.02) 5.3E206 20.08 (0.01) 2.1E210 n.a. n.a. 22+222+222
ZNF664 rs1187415 12 123 057 482 C/G 0.920 20.14 (0.03) 1.2E206 20.11 (0.02) 2.3E207 n.a. n.a. 2222222222

GPR109A rs10847980 12 121 953 875 T/G 0.771 20.08 (0.02) 7.2E206 20.06 (0.01) 7.4E206 n.a. n.a. 222222222+
IRS1 rs7558386 2 227 270 383 A/G 0.341 20.06 (0.02) 7.8E205 20.04 (0.01) 1.4E203 n.a. n.a. 2222222222

aEAF, effect allele frequency based on the data in Stage 1.
bEffect direction of each individual studies in the order of SP2_1M, SP2_610 K, SP2_550 K, KCPS-II, CLHNS, NHAPC Beijing, and NHAPC Shanghai in Stage 1, Ansan, KING_GWAS, SAPPHIRe in Stage 2
and followed by KING_noGWAS, ACC, Nomura and SMHS in Stage 3 if the cohorts were included in the analysis.
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conditional analysis, the association for all other SNPs in the 2 Mb
region were not significant (all Pconditional . 1024 in stage 1
meta-analysis), providing no evidence for a third signal at this
region. Similarly, when rs2925979 at CMIP was conditioned on
rs4783244 at the strong signal CDH13, and vice versa, little
change of association was observed, indicating two independent
loci at 16q23.2–23.3 (Table 2, Supplementary Material, Fig. S5).

Characterization of novel loci

We looked up the lead SNPs near WDR11-FGFR2 and
OR8S1-LALBA loci for evidence of adiponectin association in

the publicly released data of ADIPOGen European discovery
meta-analysis (http://www.mcgill.ca/genepi/adipogen-consortium).
The SNP rs3943077 near WDR11-FGFR2 showed consistent
direction of allelic effect, but did not exhibit strong evidence
of association (P ¼ 0.093) in . 29 000 Europeans (Table 3).
Despite a lower allele frequency of rs3943007 in ADIPOGen
(A allele ¼ 0.24) compared with that in AGEN (A allele ¼
0.57), the European study has a . 96% power to detect the
effect size (bz ¼ 0.07) observed in AGEN at a threshold of
P , 5 × 1028. The differences in allele frequency and signifi-
cant level of association suggested that variants at
WDR11-FGFR2 might have a larger genetic effect on levels

Figure 1. Regional plots of the novel and suggestive adiponectin-associated loci identified in individuals of East Asian ancestry. (A) The novel locus near
WDR11-FGFR2 on chromosome 10. The purple circle represents the index SNP rs3943077 (chr10:122 935 076; Build 36, hg18), which exhibits the strongest evi-
dence of association at this locus based on HapMap-imputed data. SNPs are colored based on HapMap Phase II CHB + JPT linkage disequilibrium with rs3943077.
Nearby gene WDR11 is located 122.601–122.659 Mb and FGFR2 is located at 123.228–123.348 Mb. (B) The suggestive locus at OR8S1-LALBA on chromosome 12.
The index SNP rs11168618 (chr12:47 219 500) has the strongest evidence of association near OR8S1 (47.206–47.208 Mb) and LALBA (47.248–47.250 Mb). The LD
r2 is also based on HapMap Phase II CHB + JPT data.
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of adiponectin in East Asians than Europeans, or the pairwise
LD between the index SNP and the untyped causal variant
vary across different populations. No evidence of association
was detected for rs11168618 at OR8S1-LALBA in ADIPOGen
Europeans (P ¼ 0.47).

HDL-C level is usually the trait most strongly correlated with
adiponectin in both Europeans and East Asians, while measures
of insulin resistance or obesity are the next closest correlates
(2,3,27–29). We confirmed these correlations in our study popu-
lations (Supplementary Material, Table S4), and next investi-
gated the SNP association with other phenotypes, including
lipid profiles and obesity-related anthropometric traits, which
were available in AGEN or other consortia (Table 3). We
found that the adiponectin-increasing allele of rs3943077 at
WDR11-FGFR2 was significantly associated with decreased
triglycerides (P ¼ 3.3 × 1024) and increased HDL-C (P ¼
4.9 × 1024) levels in East Asians from the AGEN consortium.
The SNP rs11618618 at OR8S1-LALBA exhibited a borderline
association with HDL-C in East Asians (P ¼ 0.040). In addition,
the A allele of rs3943077 associated with increased adiponectin
level was associated with decreased WHRadjBMI in East Asians

(P ¼ 9.8 × 1023). GIANT data including up to 77 000
Europeans also showed a borderline association between
rs3943077 and WHRadjBMI (P ¼ 0.013) with consistent
direction of effect.

The novel signal near WDR11-FGFR2 explained 0.6% of the
total variation in adiponectin. To assess whether this signal could
be refined, we investigated additional variants within +500 kb
of rs3943077 by testing the association of SNPs imputed from
the 1000 Genomes Project in a subset of 3778 individuals from
the Singapore prospective study program (SP2)_1M, SP2_610
and the Cebu Longitudinal Health and Nutrition Survey
(CLHNS) that had imputed data available. The most strongly
associated SNP (rs72631105, EAF ¼ 0.632, b ¼ 0.13, P ¼
5.4 × 1027) was located 30 kb away and in a moderate LD (r2/
D′ ¼ 0.63/0.89 in Genomes Project Phase 1 ASN) with
rs3943077 (EAF ¼ 0.541, b ¼ 0.10, P ¼ 1.4 × 1026) (Supple-
mentary Material, Fig. S6). All seven variants that exhibited
stronger evidence of association were located 0.16–35 kb
from rs3943077 and were not present in the HapMap reference
panel. Six of these variants were in moderate to high LD
(r2 0.63–1.00) with rs3943077, except rs10886862 (EAF ¼

Table 2. Regions with multiple signals or independent loci associated with adiponectin (Pconditional , 1024)

Index SNP Chr Position Effect/ non-effect alleles EAF Main effect analysisa Conditional analysisb

b (SE) P b (SE) P

ADIPOQ
rs10937273 3 188 032 389 A/G 0.404 0.15 (0.02) 5.7E223 0.16 (0.02) 6.9E226
rs266719 3 187 984 342 T/C 0.096 0.06 (0.03) 0.020 0.13 (0.03) 7.0E207

GPR109A-ZNF664
rs1187415 12 123 057 482 C/G 0.920 20.14 (0.03) 1.0E206 20.14 (0.03) 1.2E206
rs10847980 12 121 953 876 T/G 0.771 20.08 (0.02) 6.8E206 20.08 (0.02) 9.6E206

CMIP-CDH13
rs4783244 16 81 219 769 T/G 0.450 20.34 (0.02) 9.5E2106 20.34 (0.02) 1.8E2106
rs2925979 16 80 092 291 T/C 0.411 20.07 (0.02) 5.1E206 20.07 (0.02) 4.8E206

aThe standard errors (SEs) and P-values from Stage 1 main effect analysis were not corrected for genomic control, thus the statistics can be compared with those from
the regional conditional analyses.
bReciprocal conditional analyses were performed; The effect sizes and P-values in conditional analysis for one SNP were conditioned on the other, and vice versa.
EAF, effect allele frequency.

Table 3. Association of the novel and suggestive loci with adiponectin and obesity-related traits in other consortium

Trait Consortium Ethnicity WDR11-FGFR2-rs3943077 OR8S1-LALBA-rs11168618
Directiona P N Directiona P N

Adiponectin ADIPOGen European + 0.093 29 202 2 0.47 29 328
TG AGEN East Asian 2 3.3E-04 8311 2 0.16 18 393
HDL-C AGEN East Asian + 4.9E-04 15 035 + 0.040 25 112
LDL-C AGEN East Asian + 0.82 12 651 + 0.81 22 470
TC AGEN East Asian + 0.89 12 672 + 0.31 22 756
Obesity (BMI ≥ 27.5 kg/m2) AGEN East Asian + 0.17 32 380 2 0.25 46 355
BMI AGEN East Asian + 0.43 32 380 2 0.49 46 355
WC AGEN East Asian + 0.41 22 174 2 0.51 33 202
WCadjBMI AGEN East Asian 2 0.91 22 174 2 0.68 33 202
WHR AGEN East Asian 2 0.094 17 560 + 0.77 26 397
WHRadjBMI AGEN East Asian 2 9.8E-03 17 560 + 0.61 26 397
BMI GIANT European + 0.72 123 862 2 0.48 123 855
WHRadjBMI GIANT European 2 0.013 77 165 2 0.82 77 163

aThe directions of effect are based on the alleles (rs3943077-A; rs11168618-C) associated with increased adiponectin levels in this study. The A allele frequency of
rs3943077 is 0.57 in AGEN and 0.24 in AdipoGEN; the C allele frequency of rs11168618 is 0.86 and 0.46 in AGEN and AdipoGEN, respectively. TG: triglycerides;
TC: total cholesterol; WC: waist circumference; WCadjBMI: BMI-adjusted waist circumference; WHR: waist–hip ratio; WHRadjBMI: BMI-adjusted waist–hip
ratio.
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0.339, r2/D′ ¼ 0.23/0.84). Considering that imputation inaccur-
acy (e.g. rs72631105: IMPUTE proper info �0.75; MAHC Rsq
�0.65) may introduce uncertainty into the association results,
the lead SNP from the 1000 Genomes imputation in a subset of
samples may not be a better candidate causal variant.

The index SNP rs3943077 was located at an uncharacterized
large intergenic non-coding RNA (lincRNA) ENST00000
429809, with two predicted exons and a long intergenic
region. Twenty-two variants spanning 65 kb are in moderate to
high LD with the index SNP rs3943077 (r2 . 0.6 based on the
1000 Genomes Project Phase 1 ASN) and seven of them
overlap the lincRNA. We successfully amplified and sequence-
verified this transcript from RNA of testes where the transcript
was initially identified, but not other tissues including adipose
and liver (data not shown). At least four LD proxies of
rs3943077 are located at or near enhancer marks in adipose
nuclei and predicted to possibly alter the transcriptional activity
of nearby genes (30,31). FGFR2 implicated in adipocyte hyper-
plasia and hypertrophy (32,33) is a good candidate gene;
however, luciferase reporter assays in differentiated adipocytes
showed no allelic difference in transcriptional activity for the
five SNPs tested (data not shown).

DISCUSSION

This study is the largest GWAS meta-analysis conducted for
adiponectin association in populations of East Asian ancestry
to date. The three-stage meta-analyses provided convincing
evidence of a novel adiponectin-associated locus near
WDR11-FGFR2. Our data also suggested a potential new
locus near OR8S1-LALBA that did not reach traditional threshold
of GWA significance. In addition to confirming the previously
described loci of CDH13, ADIPOQ, PEPD, CMIP, GPR109A
and ZNF664, we identified a second signal at EIF4A2 near
ADIPOQ that exhibited suggestive evidence of association
only after conditioning the lead SNP. Our findings demonstrated
the independence of two pairs of closely located loci on chromo-
some 16 at CMIP and CDH13, and on chromosome 12 at
GPR109A and ZNF664. The adiponectin-increasing allele of
the index SNP near WDR11-FGFR2 was also associated with
increased HDL-C, decreased triglycerides and decreased
BMI-adjusted WHR.

We hypothesize that the novel locus would likely act by regu-
lating the expression or function of a transcript that could affect
adiponectin production or secretion. A nearby transcript
FGFR2, located � 300 kb away and encoding fibroblast
growth factor receptor type 2, is a strong candidate gene. Abun-
dantly expressed in human and mouse adipocytes, FGFR2
includes two alternatively spliced isoforms, FGFR2b and
FGFR2c, which have different specificities for ligands and pat-
terns of expression (34,35). FGFR2b is a receptor for FGF10
and regulates the proliferation of preadipocytes and the subse-
quent differentiation into mature adipocytes (32). Adiponectin
is not expressed in preadipocytes; differentiation into mature
adipocytes is necessary for adiponectin expression and secretion
(36). In mouse white adipose tissue, Fgfr2c is a receptor for Fgf9
and affects hypertrophy of mature adipocytes (33). An increase
in the size of mature adipocytes dysregulates the expression of
adipokines, including adiponectin (37). Hence, the involvement

of FGFR2b and FGFR2c in the processes of adipocyte hyperpla-
sia and hypertrophy suggests possible mechanisms that link
FGFR2 to adiponectin regulation.

While consistent evidence supports the adiponectin associ-
ation with variants in or near ADIPOQ in diverse populations,
the most strongly associated SNPs are not shared across
studies. The lead SNP rs6810075 reported in Europeans by ADI-
POGen, though also significantly associated with adiponectin
in East Asians (b ¼ 0.12, P ¼ 4.7 × 10216, effect allele
frequency ¼ 0.55), exhibited weaker evidence of association
compared with that for our index SNP rs10937273 (b ¼ 0.15,
P ¼ 1.1 × 10222, effect allele frequency ¼ 0.41). The magni-
tude and significance level for rs6810075 were substantially atte-
nuated (b ¼ 0.01, Pconditional ¼ 0.36) when conditioning on our
index SNP rs10937273. The two variants were moderately cor-
related, with LD estimates of r2/D′ ¼ 0.58/1.00 and 0.44/1.00 in
the 1000 Genomes Project Phase 1 ASN and EUR, respectively.
Therefore, rs10937273 and rs6810075 likely represent the same
signal at ADIPOQ.

However, there is a suggestion of a secondary signal rs266719
located �60 kb upstream of ADIPOQ at EIF4A2, the gene en-
coding eukaryotic initiation factor 4A (EIF4A), isoform
2. EIF4A is an ATP-dependent RNA helicase and forms the
translational initiation complex EIF4F (38), which has been
shown to regulate the expression of C/EBPs that affect adipocyte
differentiation, adipogenesis and insulin sensitivity (39).
Genetic variants may affect adiponectin levels by influencing
EIF4A2 expression or by acting more distantly on ADIPOQ
expression. The identification of this second signal that
showed association with adiponectin only after conditioning
on the lead signal suggests allelic heterogeneity at this locus
but a complex pattern of association (40). The trait-lowering
allele of rs266719 (C allele frequency ¼ 0.904) is coupled
with the trait-increasing allele of rs10937273 (A allele
frequency ¼ 0.404) on the same haplotype (LD r2/D′ ¼ 0.03/
0.77; frequencies of rs266719–rs10937273 haplotypes: CG ¼
0.559, CA ¼ 0.360, TG ¼ 0.077 and TA ¼ 0.007, 1000
Genomes Project Phase 1 ASN), thus the significance of residual
association increased when accounting for the other signal. An
SNP–SNP interaction might underlie the association. Prior evi-
dence exists for multiple signals at ADIPOQ (24,41); however,
these SNPs may still be partially tagged by untyped variants
(40). Therefore, more detailed characterization of allelic hetero-
geneity requires deeper sequencing and functional assessment.

Our data from conditional analysis demonstrate that the locus
CDH13 is independent of CMIP located 1 Mb away (7), but did
not support the previous evidence of two signals at CDH13
(rs3865188, rs3865186, r2/D′ ¼ 0.34/0.97) (12) (Supplemen-
tary Material, Fig. S7). Our index SNP rs4783244 is highly cor-
related with the previously reported first signal rs3865188 (LD
r2/D′ ¼ 0.90/0.97), and conditioning on this signal substantially
attenuated the association with the previously described second
signal (rs3865186, Pinitial ¼ 2.3 × 10249, Pconditional ¼ 0.058).
Although the pairwise LD is modest, conditional analysis sug-
gested that the second signal could be explained by the initial
signal. The signal at CDH13 consistently has been reported to
exhibit stronger evidence of association compared with that at
ADIPOQ in all published GWA studies for adiponectin in
Asian populations (11,12,14,15), while the ADIPOQ has
shown the strongest adiponectin association in populations of
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European ancestry (7–10,13). At CDH13, the index SNPs from
our East Asian samples (rs4783244) and the ADIPOGen Eur-
opeans (rs12922394) are weakly correlated (LD r2/D′ ¼ 0.36/
0.71 and 0.04/0.75 in the 1000 Genomes Project Phase 1 ASN
and EUR, respectively) and have varied allele frequencies
(rs4783244: 0.36 in East Asians and 0.46 in Europeans;
rs12922394: 0.24 in East Asians and 0.07 in Europeans). Simi-
larly, the lead SNP rs12051272 from the ADIPOGen multi-
ethnic meta-analysis was common in Asians (minor allele fre-
quency, MAF ¼ 0.33), but rare in Europeans and African Amer-
icans (MAF ¼ 0.03 for both) (7), and the pairwise LD between
rs12051272 and rs4783244 differs across populations (r2/D′ ¼
0.95/0.99, 0.03/1.00 and 0.10/1.00 in the 1000 Genomes
Project Phase 1 ASN, EUR and AFR, respectively). These
varied allele frequencies and LD structures may explain the dif-
ferences in strength of genetic association across continental
populations. The differences may also be influenced by differing
environmental exposures that modulate the effect of a gene (42).
Consistent with previous findings (11,43), we found little evi-
dence of the association between CDH13 and other metabolic
and cardiovascular-related traits in East Asians (all P . 0.05).

In this study, we also generalized the adiponectin association
with GPR109A and ZNF664 at 12q24.31 to populations of East
Asian ancestry, and confirmed that the two loci located �1 Mb
apart were independently associated with adiponectin. The
ZNF664 index SNPs identified in Europeans (rs7133378) and
East Asians (rs1187415) were in moderate to high LD (r2/
D′ ¼ 0.64/1.00 and 0.90/1.00 in the 1000 Genomes Project
Phase 1 ASN and EUR, respectively), suggesting that both the
groups shared the same signal. At GPR109A, the lead SNP
rs10847980 identified in this study was �200 kb away from
the European index rs601339 and these two SNPs were weakly
correlated (r2/D′ ¼ 0.02/0.31 and 0.03/0.30 in the 1000
Genomes Project Phase 1 ASN and EUR). The SNP rs601339
only exhibited borderline association with adiponectin in East
Asians (Pinitial ¼ 0.014), and this association can be explained
by rs10847980 (Pconditional ¼ 0.20 for rs601339). The differ-
ences in lead SNPs from the different populations might reflect
different frequencies, different causal variants or that index
SNPs may be only correlated with one or more underlying
causal variants not analyzed. Further study of biological
mechanisms is warranted to determine whether the signals at
GRP109A and ZNF664 act independently on distinct genes or
on the same gene. Among nearby candidates, GPR109A has
been shown to be required for niacin-stimulated adiponectin
secretion (44).

The adiponectin-increasing allele of the WDR11-FGFR2
index SNP was associated with an increased HDL-C, decreased
triglycerides and decreased BMI-adjusted WHR in East Asians.
This direction of the genetic effects on these traits agrees with the
consistently observational positive correlation of adiponectin
with HDL-C and the inverse correlation with triglycerides and
indices of abdominal obesity (Supplementary Material,
Table S4) (45–47). In addition, the more pronounced evidence
of SNP association with BMI-adjusted WHR (P ¼ 9.8 ×
1023) compared with BMI (P ¼ 0.43) suggests that
WDR11-FGFR2 variants directly or indirectly influence abdom-
inal obesity, a better predictor of metabolic and cardiovascular
risk (48,49) than the overall obesity. Several other known adipo-
nectin loci also exhibited evidence of association with other

metabolic and cardiovascular risks. A SNP rs3786897 at
PEPD was previously reported to be associated with the risk
of T2D in East Asians (16); this SNP is in complete LD with
the adiponectin index rs889140 (r2/D′ ¼ 0.99/1.00 in the 1000
Genomes Project Phase 1 ASN), demonstrating a shared signal
for adiponectin and T2D in this population. SNPs near
ZNF664, associated with HDL-C and triglycerides in Europeans
(23), are highly correlated with the adiponectin signal in both
Europeans and Asians (rs4765127 and rs1187415, r2/D′ ¼
0.97/0.99 in the 1000 Genomes Project Phase 1 EUR and 0.92/
0.96 in 1000Genomes ASN). In addition, the same index SNP
rs2925979 at CMIP exhibited association with HDL-C in Eur-
opeans (23) and with adiponectin in our data. CMIP also dis-
played suggestive evidence of association with T2D in East
Asians; however, the signals for T2D and adiponectin were
weakly correlated (r2/D′ ¼ 0.14/0.51 in the 1000 Genomes
Project Phase 1 ASN). The South Asian-specific T2D locus
ST6GAL1 (50) was �100 kb away from ADIPOQ; but the
T2D index SNP rs16861329 is not in LD with either of the two
adiponectin-associated signals at ADIPOQ (LD r2 ¼ 0). Given
our current data, we were unable to determine whether the
genetic effect of adiponectin loci on related metabolic traits is
due to a pleiotropic effect or through SNP influence on adiponec-
tin. Nevertheless, these findings support the prior suggestions of
a shared allelic architecture of adiponectin levels and related
metabolic traits (7) and motivate further studies to investigate
potential cause–effect relationships between traits (51,52).

In conclusion, this GWAS meta-analysis for adiponectin in
East Asians provides the first evidence for a novel locus near
WDR11-FGFR2 and expands the understanding of the genetic
basis of adiponectin levels at several known loci. The findings
that the novel adiponectin locus near WDR11-FGFR2 also dis-
played association with HDL-C, triglycerides and BMI-adjusted
WHR demonstrate the shared allelic architecture for adiponectin
with lipid traits and central obesity, and motivate further studies
of underlying biological mechanisms.

MATERIALS AND METHODS

Study population and phenotype

The Asian Genetic Epidemiology Network (AGEN) is a consor-
tium of genetic epidemiology studies of metabolic and cardio-
vascular diseases and related traits conducted in individuals of
East Asian ancestry (http://www.agenconsortium.org/). This
AGEN adiponectin study consisted of a total of 18 079 indivi-
duals from 14 cohorts that participated in three stages of
meta-analysis. The participating cohorts are either population-
based (n ¼ 13) or family-based (n ¼ 1). Stage 1 of GWA discov-
ery consisted of 7827 Chinese, Korean and Filipino individuals
from SP2, the Korean Cancer Prevention Study II (KCPS-II),
CLHNS and the Nutrition and Health of Aging Population in
China (NHAPC). SP2 consisted of three independent cohorts
of SP2_1M, SP2_610 K and SP2_550 K genotyped with differ-
ent platforms. NHAPC included two independent cohorts of
NHAPC Beijing and NHAPC Shanghai based on the sites
where individuals were recruited. Stage 2 of in silico replication
included 4298 individuals from the Ansan cohort (Ansan),
Kita-Nagoya Genomic Epidemiology Study (KING) and the
Stanford Asian Pacific Program in Hypertension and Insulin
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Resistance (SAPPHIRe). Stage 3 contains 5954 individuals from
three Japanese cohorts of KING, the anti-aging center cohort
study (AAC) and Nomura cohort study (Nomura) and one
Chinese cohort of Shanghai Men’s Health Study (SMHS).
Plasma or serum adiponectin levels were measured via an
enzyme-linked immunosorbent assay method, a latex enhanced
imunoturbidimetric assay or Luminex xMAPTM Technology.
Total adiponectin was measured in all studies, except Nomura,
in which high-molecular weight adiponectin was assessed.
Further description of the sample characteristics is given in
detail in the Supplementary Material, text and Table S1. The cor-
relation structures between adiponectin and these traits are
shown in the Supplementary Material, Table S4. The sex-
stratified measures of adiponectin and other metabolic/
cardiovascular-related traits are described in Supplementary
Material, Table S5. All study protocols were approved by Insti-
tutional Review Boards at their respective sites, and written
informed consent was obtained from all participants.

Genotyping, imputation and quality control

Individuals in Stages 1 and 2 were genotyped using commercial-
ly available Illumina or Affymetrix genome-wide genotyping
arrays. Supplementary Material, Table S1, summarizes the
genotyping platforms, quality control criteria across studies, in-
cluding SNP call rate, sample success rate, Hardy–Weinberg
equilibrium and MAF. Imputation of HapMap haplotypes
(CHB + JPT for all samples except CLHNS which used
CHB + JPT + CEU) of �2 million SNPs was carried out for
each study using IMPUTE or MACH. Additional imputation
within +500 kb flanking region of rs3943077 at
WDR11-FGFR2 was performed based on the haplotypes from
the 1000 Genomes Project Phase 1 release (November 2010)
of all Asian samples (ASN) in a subset of 3778 individuals
from three Stage 1 cohorts, including SP2_1M, SP2_610K and
CLHNS. SNPs with poor imputation quality (proper info ,0.5
for IMPUTE or Rsq , 0.3 for MACH) were excluded from as-
sociation analysis. In Stage 3, genotyping for individuals from
the KING_noGWAS, ACC and Nomura cohorts (n ¼ 5724)
was carried out using TaqMan, and all five SNPs had call rates
.98.8%. SNP genotyping and imputation in SMHS (n ¼ 230)
were carried out using Affymetrix 6.0 and MACH, respectively.
All five SNPs analyzed in SMHS were imputed from phased hap-
lotypes of HapMap (R22 CHB + JPT), with imputation quality
(MACH_Rsq) .0.76.

Statistical analysis and SNP prioritization

Association analyses within each cohort
In each individual cohort, adiponectin was natural log trans-
formed to approximate normal distribution. Outliers defined
as values greater than mean+ 4 SD were truncated. As the
ranges of adiponectin levels substantially varied across
studies (Supplementary Material, Table S1), natural log-
transformed adiponectin was standardized to z-scores. In
population-based studies, multiple linear regression models as-
suming an additive mode of inheritance were applied to test for
association with genotyped or imputed SNPs by accounting for
age, sex and BMI in Model 1, and without the adjustment for
BMI in Model 2. The family-based study used regression

models by the generalized estimating equation approach to
adjust for the same covariates while also accounting for corre-
lations among related individuals. Software applied for associ-
ation analysis in each study is described in Supplementary
Material, Table S1.

Meta-analysis of GWAS in Stage 1
The meta-analysis for adiponectin association with �2.5 million
SNPs was performed by two analysts independently each using
two different methods of sample size weighted and inverse-
variance weighted models implemented in METAL. Prior to
meta-analysis, cohort-specific summary statistics were cor-
rected using genomic control (lGC ranges 0.997–1.033), and
the overall meta-analytic results were additionally corrected
for genomic control (lGC ¼ 1.009). The presence of heterogen-
eity was assessed by I2 statistic and Cochran’s Q-test. After
meta-analysis, �226 000 (9%) SNPs were removed due to an
effective sample size of ,50% of the total sample size in
Stage 1 and/or evidence of heterogeneity across cohorts (P for
Cochran’s Q-test , 1026). We applied the genome-wide associ-
ation meta-analysis software to perform the sex-specific
meta-analysis and test for heterogeneity between sex using the
whole genome association data (53,54).

In silico follow-up in Stage 2
A total of 612 SNPs had a meta-analyzed P-value of ,1024 in
either Model 1 or 2. To prioritize SNPs for Stage 2 follow-up,
we applied the ‘—clump’ command implemented in PLINK
(55) (http://pngu.mgh.harvard.edu/~purcell/plink/), by setting
the LD threshold of r2 , 0.1 in HapMap reference panel of
CHB + JPT_r23a and disregarding the physical distance
between SNPs. A total of 115 SNPs, including 110 clumped
SNPs and 5 extra variants at/near each locus of
WDR11-FGFR2, CDH13, ADIPOQ, PEPD and ZNF664, were
tested for association with adiponectin in 4298 individuals from
three cohorts with GWAS data. The cohort-level summary statis-
tics from the in silico follow-up were meta-analyzed with the data
from the seven individual cohorts in Stage 1.

Further follow-up in Stage 3
We selected lead SNPs representing the five novel genome-wide
significant or suggestive loci (P , 1025; WDR11-FGFR2,
KCNH8, OR8S1-LALBA, HIVEP2 and GAL3ST1) from the
Stages 1 and 2 combined meta-analysis, and followed up these
loci in 5954 individuals from the four cohorts in Stage 3. Joint
meta-analysis was carried out by combining the cohort-level
summary statistics from all the 14 individual cohorts in Stages
1, 2 and 3.

Conditional analysis
Conditional analysis was conducted in the seven cohorts in Stage
1 by adding the most strongly associated SNP at a locus into the
regression model as a covariate and testing the residual associ-
ation with all remaining SNPs within +500 kb flanking
regions of the lead SNP. Sequential conditional analyses were
performed until the strongest SNP displayed a conditional
P–value of .1024 in meta-analysis of the seven cohorts. Recip-
rocal conditional analyses were also carried out at two pairs of
closely located (,2 Mb) loci, GPR109A and ZNF664 on
12q24.31, and at CMIP and CDH13 on 16q23.2–23.3, to

1116 Human Molecular Genetics, 2014, Vol. 23, No. 4

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt488/-/DC1


evaluate the independence of the association for these nearby
loci. The regions for conditional analyses and the SNPs used
as conditioning variables are shown in Supplementary Material,
Table S6.

The explained phenotypic variance was calculated as: 2 ×
MAF × (1 2 MAF) × bz

2 (56). Regional association plots
were created using LocusZoom (57).

SNP association with lipid and obesity-related
anthropometric traits in Asians
We investigated the evidence of association for the two variants
of rs3943077 at WDR11-FGFR2 and rs11618618 at
OR8S1-LALBA with lipid and obesity-related anthropometric
traits that were available in other AGEN studies (Supplementary
Material, text). The on-going AGEN lipids study provided the
summary statistics for the SNP associations with triglycerides,
HDL-C, LDL-C and total cholesterol in up to 25 413 Asians
from 13 cohorts in the discovery stage. Association results for
obesity and obesity-related anthropometric traits, including
BMI, waist circumference and waist–hip ratio, were provided
by the AGEN BMI study, the discovery stage of which consisted
of 86 757 Asians from 21 individual studies.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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