125 research outputs found

    CPS Attacks Mitigation Approaches on Power Electronic Systems with Security Challenges for Smart Grid Applications: A Review

    Get PDF
    This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications

    Bortezomib in Kidney Transplantation

    Get PDF
    Although current therapies for pretransplant desensitization and treatment of antibody-mediated rejection (AMR) have had some success, they do not specifically deplete plasma cells that produce antihuman leukocyte antigen (HLA) antibodies. Bortezomib, a proteasome inhibitor approved for the treatment of multiple myeloma (a plasma cell neoplasm), induces plasma cell apoptosis. In this paper we review the current body of literature regarding the use of this biological agent in the field of transplantation. Although limited experience with bortezomib may seem to show promise in the realm of transplant recipients desensitization and treatment of AMR, there is also experience that may suggest otherwise. Bortezomib's role in desensitization protocols and treatment of AMR will be defined better as more clinical data and trials become available

    A high-speed microturbine PMA-SYnRg emulation using power hardware-in-the-loop for wind energy conversion systems

    Get PDF
    In this paper, a high-speed microturbine (MT) permanent magnet assisted synchronous reluctance generator (PMa-SynRG) real-time emulation based on linear impedance regulator (LIR) using power hardware-in-the-loop (PHIL) for wind energy generation tests is presented. The LIR is designed without any feedback control loop for reshaping the s-domain performances of the current filter along with the converter inside the PMa-SynRG emulated system. The PHIL platform not only provides a method for eliminating the high cost of using real renewable energy hardware but also it enables the developers to create new, rapid, and reliable controllers for renewable energy testing. This platform can be used in investigating the performance of energy system under various conditions even if the generator prototype is not yet developed or unavailable. PMa-SynRG mathematical model is emulated in the real-time using PHIL platform while the output voltage of the proposed emulator imitates the generated voltage through the simulated model. In addition, a voltage source converter is employed as a voltage amplifier for imitating the PMa-SynRG performance when supplying nonlinear/linear loads. In this paper, the proportional-integral resonant (PIR) controller is utilized at the voltage control loop for tracking the distorted output reference signal voltage. In order to investigate the performance of the proposed PMa-SynRG emulator, it has been simulated and compared with MATLAB/SIMULINK environment

    Functional diffusion map of malignant brain tumors: A surrogate imaging biomarker for early prediction of therapeutic response and patient survival

    Get PDF
    AbstractPurposeTo evaluate the ability of functional diffusion mapping “fDM” to predict early treatment response and survival in patients with primary malignant brain tumors.Patients and methodsForty-six brain tumor patients were examined by diffusion MRI before and 3 weeks after initiation of chemo- and/or radiotherapy. Images were co-registered to pretherapy scans, and tumor volumes with significant changes in apparent diffusion coefficient values were spatially displayed as functional diffusion maps. The predictive values of percentage of change in whole-tumor volume, mean ADC and fDM parameters for treatment response were evaluated by their correlation with the standard clinico-radiologic response criteria and overall survival of the two response groups was determined.ResultsOf the analyzed 46 brain tumors, 21 tumors were responding and 25 were stable/non-responding. At 3 weeks after initiation of therapy, the percentage of tumor volume with significant increase in diffusion (VR; red voxels) was the strongest predictor of treatment response than the changes in whole-tumor volume and mean ADC values determined at the same time point as compared to their pretherapy values. VR threshold of 14.5% at 3 weeks had sensitivity, specificity, positive and negative predictive values of 100% for all differentiating responding from stable/non-responding tumors. Overall survival in stable/non-responding group was shorter than in the responding group (8.7 versus 35.6 months; ∗∗P<0.001).ConclusionThe use of fDM provided an early and direct surrogate marker for predicting treatment response and patient survival in patients with malignant brain tumor

    COVID-19 mortality may be reduced among fully vaccinated solid organ transplant recipients.

    Get PDF
    BACKGROUND: Solid organ transplant (SOT) recipients are at increased risk for morbidity and mortality from COVID-19 due to their immunosuppressed state and reduced immunogenicity from COVID-19 mRNA vaccines. This investigation examined the association between COVID-19 mRNA vaccination status and mortality among SOT recipients diagnosed with COVID-19. METHODS & FINDINGS: A retrospective, registry-based chart review was conducted investigating COVID-19 mortality among immunosuppressed solid organ transplant (SOT) recipients in a large metropolitan healthcare system in Houston, Texas, USA. Electronic health record data was collected from consecutive SOT recipients who received a diagnostic SARS-CoV-2 test between March 1, 2020, and October 1, 2021. The primary exposure was COVID-19 vaccination status at time of COVID-19 diagnosis. Patients were considered \u27fully vaccinated\u27 at fourteen days after completing their vaccine course. COVID-19 mortality within 60 days and intensive care unit admission within 30 days were primary and secondary endpoints, respectively. Among 646 SOT recipients who were diagnosed with COVID-19 at Houston Methodist Hospital between March 2020, and October 2021, 70 (10.8%) expired from COVID-19 within 60 days. Transplanted organs included 63 (9.8%) heart, 355 (55.0%) kidney, 108 (16.7%) liver, 70 (10.8%) lung, and 50 (7.7%) multi-organ. Increasing age was a risk factor for COVID-19 mortality, while vaccination within 180 days of COVID-19 diagnosis was protective in Cox proportional hazard models with hazard ratio 1.04 (95% CI: 1.01-1.06) and 0.31 (0.11-0.90), respectively). These findings were confirmed in the propensity score matched cohort between vaccinated and unvaccinated patients. CONCLUSIONS: This investigation found COVID-19 mortality may be significantly reduced among immunosuppressed SOT recipients within 6 months following vaccination. These findings can inform vaccination policies targeting immunosuppressed populations worldwide

    Kidney and pancreas transplantation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106710/1/j.1600-6135.2004.00399.x.pd

    Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment

    Get PDF
    Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization. To overcome the limitations of poor islet availability, here, we investigate the potential of bone marrow–derived mesenchymal stem cells differentiated into islet-like insulin-producing aggregates. Islet-like insulin-producing aggregates, characterized by gene expression, are shown to be similar to pancreatic islets and display positive immunostaining for insulin and glucagon. To address the limits of current encapsulation systems, we developed a novel three-dimensional printed, scalable, and potentially refillable polymeric construct (nanogland) to support islet-like insulin-producing aggregates’ survival and function in the host body. In vitro studies showed that encapsulated islet-like insulin-producing aggregates maintained viability and function, producing steady levels of insulin for at least 4 weeks. Nanogland—islet-like insulin-producing aggregate technology here investigated as a proof of concept holds potential as an effective and innovative approach for diabetes cell therapy

    Resolution of Mild Ganciclovir-Resistant Cytomegalovirus Disease with Reduced-Dose Cidofovir and CMV-Hyperimmune Globulin

    Get PDF
    Ganciclovir-resistant cytomegalovirus (CMV) is associated with significant morbidity in solid organ transplant recipients. Management of ganciclovir-resistant CMV may be complicated by nephrotoxicity which is commonly observed with recommended therapies and/or rejection induced by “indirect” viral effects or reduction of immunosuppression. Herein, we report a series of four high serologic risk (donor CMV positive/recipient CMV negative) kidney transplant patients diagnosed with ganciclovir-resistant CMV disease. All patients initially developed “breakthrough” viremia while still receiving valganciclovir prophylaxis after transplant and were later confirmed to exhibit UL97 mutations after failing to eradicate virus on adequate dosages of valganciclovir. The patients were subsequently and successfully treated with reduced-dose (1-2 mg/kg) cidofovir and CMV-hyperimmune globulin, given in 2-week intervals. In addition, all patients exhibited stable renal function after completion of therapy, and none experienced acute rejection. The combination of reduced-dose cidofovir and CMV-hyperimmune globulin appeared to be a safe and effective regimen in patients with mild disease due to ganciclovir-resistant CMV

    Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation.

    Get PDF
    Cell encapsulation is an attractive transplantation strategy to treat endocrine disorders. Transplanted cells offer a dynamic and stimulus-responsive system that secretes therapeutics based on patient need. Despite significant advancements, a challenge in allogeneic cell encapsulation is maintaining sufficient oxygen and nutrient exchange, while providing protection from the host immune system. To this end, we developed a subcutaneously implantable dual-reservoir encapsulation system integrating in situ prevascularization and local immunosuppressant delivery, termed NICHE. NICHE structure is 3D-printed in biocompatible polyamide 2200 and comprises of independent cell and drug reservoirs separated by a nanoporous membrane for sustained local release of immunosuppressant. Here we present the development and characterization of NICHE, as well as efficacy validation for allogeneic cell transplantation in an immunocompetent rat model. We established biocompatibility and mechanical stability of NICHE. Further, NICHE vascularization was achieved with the aid of mesenchymal stem cells. Our study demonstrated sustained local elution of immunosuppressant (CTLA4Ig) into the cell reservoir protected transcutaneously-transplanted allogeneic Leydig cells from host immune destruction during a 31-day study, and reduced systemic drug exposure by 12-fold. In summary, NICHE is the first encapsulation platform achieving both in situ vascularization and immunosuppressant delivery, presenting a viable strategy for allogeneic cell transplantation

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p &lt; 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)
    • 

    corecore