43 research outputs found

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Get PDF
    Background: Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). Methods: RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results: RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 +/- 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 +/- 4% and 4 +/- 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion: RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis

    Dahlia latent viroid: a recombinant new species of the family Pospiviroidae posing intriguing questions about its origin and classification

    Full text link
    [EN] A viroid-like RNA has been detected in two asymptomatic dahlia accessions by return and double PAGE. It appeared smaller than Chrysanthemum stunt viroid and Potato spindle tuber viroid, the two members of the genus Pospiviroid, family Pospiviroidae, reported in this ornamental previously. RT-PCR with primers designed for amplifying all pospiviroids produced no amplicons, but RT-PCR with random primers revealed a 342 nt RNA. The sequence of this RNA was confirmed with specific primers, which additionally revealed its presence in many dahlia cultivars. The RNA was named Dahlia latent viroid (DLVd) because it replicates autonomously, but symptomlessly, in dahlia and shares maximum sequence identity with other viroids of less than 56 %. Furthermore, DLVd displays characteristic features of the family Pospiviroidae: a predicted rod-like secondary structure of minimum free energy with a central conserved region (CCR), and the ability to form the metastable structures hairpins I and II. Its CCR is identical to that of Hop stunt viroid (HSVd, genus Hostuviroid). However, DLVd: (i) has the terminal conserved region present in members of the genus Pospiviroid, but absent in HSVd, and (ii) lacks the terminal conserved hairpin present in HSVd. Phylogenetic reconstructions indicate that HSVd and Pepper chat fruit viroid (genus Pospiviroid) are the closest relatives of DLVd, but DLVd differs from these viroids in its host range, restricted to dahlia so far. Therefore, while DLVd fulfils the criteria to be a novel species of the family Pospiviroidae, its recombinant origin makes assignment to the genera Pospiviroid or Hostuviroid problematicResearch in R. F.'s laboratory is presently supported from the Ministerio de Educacion y Ciencia (MEC) of Spain by grant BFU2011-28443. During this work P. S. has been supported by postdoctoral contracts from the Generalitat Valenciana (APOSTD/2010, program VALi + d) and the MEC (Program Juan de la Cierva).Verhoeven, JTJ.; Meekes, ETM.; Roenhorst, JW.; Flores Pedauye, R.; Serra Alfonso, P. (2013). Dahlia latent viroid: a recombinant new species of the family Pospiviroidae posing intriguing questions about its origin and classification. Journal of General Virology. 94(4):711-719. https://doi.org/10.1099/vir.0.048751-0S71171994

    Intracellular Iron Transport and Storage: From Molecular Mechanisms to Health Implications

    No full text
    Maintenance of proper “labile iron” levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess “labile iron” is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation–reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation. Antioxid. Redox Signal. 10, 997–1030
    corecore