49 research outputs found

    Seasonality of fire weather strongly influences fire regimes in south Florida savanna-grassland landscapes

    Get PDF
    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993-2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997-2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions should be useful as a basis for ecological fire management of humid savanna-grassland landscapes worldwide. Funding: The Avon Park Air Force Range (Department of Defense, United States Air Force) provided funding for most of this study. Additional support for this study was provided through NSF Award 0950302 (WJP, PI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Accurate quantification of seasonal rainfall and associated climate-wildfire relationships

    Get PDF
    Wildfires are often governed by rapid changes in seasonal rainfall. Therefore, measuring seasonal rainfall on a temporally finescale should facilitate the prediction of wildfire regimes. To explore this hypothesis, daily rainfall data over a 58-yr period (1950-2007) in south-central Florida were transformed into cumulative rainfall anomalies (CRAs). This transformation allowed precise estimation of onset dates and durations of the dry and wet seasons, as well as a number of other variables characterizing seasonal rainfall. These variables were compared with parameters that describe ENSO and a wildfire regimeinthe region (at the Avon Park Air Force Range). Onset dates and durations were found to be highly variable among years, with standard deviations ranging from 27 to 41 days. Rainfall during the two seasons was distinctive, with the dry season having half as much as the wet season despite being nearly 2 times as long. The precise quantification of seasonal rainfall led to strong statistical models describing linkages between climate and wildfires: a multiple-regression technique relating the area burned with the seasonal rainfall characteristics had an R2adj of 0.61, and a similar analysis examining the number of wildfires had an R2adj of 0.56. Moreover, the CRA approach was effective in outlining how seasonal rainfall was associated with ENSO, particularly during the strongest and most unusual events (e.g., El Niño of 1997/98). Overall, the results presented here show that using CRAs helped to define the linkages among seasonality, ENSO, and wildfires in south-central Florida, and they suggest that this approach can be used in other fire-prone ecosystems. © 2010 American Meteorological Society

    Feral swine damage to globally imperiled wetland plant communities in a significant biodiversity hotspot in Florida

    Get PDF
    We studied rooting damage during five-years of feral swine control at Avon Park Air Force Range, a significant botanical biodiversity hotspot in peninsular Florida with many globally imperiled plant species and communities. While control reduced swine abundance, remaining animals consistently rooted the 49 studied sites in both middle-dry season (MDS) and late-dry season (LDS) each year. At each study site, we measured rooting with sub-meter accuracy. Neither total nor proportional area rooted differed in either season, across study years, or among plant community types: herbaceous seepage slopes, wet pine savannas, wet grasslands. The proportion of sites with damage during MDS was at least 25 % less than pre-control baseline. During LDS, the proportion of sites with damage increased over years but remained below the initial 2 years’ MDS results. Fresh rooting frequency (rooting \u3c1 \u3eweek-old) across sites dropped precipitously from baseline and remained low for MDS. Fresh rooting frequency among sites during LDS was lower than MDS for all but year two of the study. Canopied habitatwetlands, integrating swine control into other compatible land use practices, and improving swine control efficacy. While we measured damage amounts at each site very accurately, our approach of also considering frequency of rooting and frequency of fresh rooting across sites offers low-labor means to broadly assess swine damage and control efficacy at large geographic scales because in-field measurements of damage amounts are not needed

    Feral swine damage to globally imperiled wetland plant communities in a significant biodiversity hotspot in Florida

    Get PDF
    We studied rooting damage during five-years of feral swine control at Avon Park Air Force Range, a significant botanical biodiversity hotspot in peninsular Florida with many globally imperiled plant species and communities. While control reduced swine abundance, remaining animals consistently rooted the 49 studied sites in both middle-dry season (MDS) and late-dry season (LDS) each year. At each study site, we measured rooting with sub-meter accuracy. Neither total nor proportional area rooted differed in either season, across study years, or among plant community types: herbaceous seepage slopes, wet pine savannas, wet grasslands. The proportion of sites with damage during MDS was at least 25 % less than pre-control baseline. During LDS, the proportion of sites with damage increased over years but remained below the initial 2 years’ MDS results. Fresh rooting frequency (rooting \u3c1 \u3eweek-old) across sites dropped precipitously from baseline and remained low for MDS. Fresh rooting frequency among sites during LDS was lower than MDS for all but year two of the study. Canopied habitatwetlands, integrating swine control into other compatible land use practices, and improving swine control efficacy. While we measured damage amounts at each site very accurately, our approach of also considering frequency of rooting and frequency of fresh rooting across sites offers low-labor means to broadly assess swine damage and control efficacy at large geographic scales because in-field measurements of damage amounts are not needed

    Pleistocene diversification of unifoliolate-leaved Lupinus (Leguminosae: Papilionoideae) in Florida

    Get PDF
    The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed

    Cambial Phenology Informs Tree-Ring Analysis of Fire Seasonality in Coastal Plain Pine Savannas

    Get PDF
    © 2018, The Author(s). Understanding of historical fire seasonality should facilitate development of concepts regarding fire as an ecological and evolutionary process. In tree-ring based fire-history studies, the seasonality of fire scars can be classified based on the position of the fire scar within or between growth rings. Cambial phenology studies are needed to precisely relate a fire-scar position to months within a year because the timing of dormancy, earlywood production, and latewood production varies by species and location. We examined cambial phenology patterns of longleaf pine (Pinus palustris Mill.), slash pine (P. elliottii Engelm.), and South Florida slash pine (P. densa [Little & K.W Dorman] Silba) at sites in southern Georgia and south-central and northern Florida, USA. We developed long-term (2.5 yr to 12 yr) datasets of monthly growth and dormancy and determined when trees transitioned from producing early-wood to producing latewood each year. Most trees were dormant for a period of 1 to 2 months in the winter and transitioned from earlywood to latewood in June. Given the annual growth ring morphology of the pines that we studied and the timing of the lightning-fire season in our study area, we propose a new classification system for assigning seasonality to fire scars found in the three native upland pine species that we studied. This new system, which we name the Coastal Plain Pine System, accounts for the large proportion of latewood typical of these pines and includes a position (the transition position) that corresponds with the time of year when lightning fires occur most frequently. Our findings demonstrate how cambial phenology data can improve interpretation of fire-scar data for determining historical fire seasonality

    Carex exilis Dewey (Cyperaceae) new to Alabama

    No full text
    Volume: 70Start Page: 400End Page: 40
    corecore