374 research outputs found

    Emergent SO(5)SO(5) Symmetry at the N\'eel to Valence-Bond-Solid Transition

    Get PDF
    We show numerically that the `deconfined' quantum critical point between the N\'eel antiferromagnet and the columnar valence-bond-solid, for a square lattice of spin-1/2s, has an emergent SO(5)SO(5) symmetry. This symmetry allows the N\'eel vector and the valence-bond-solid order parameter to be rotated into each other. It is a remarkable 2+1-dimensional analogue of the SO(4)=[SU(2)×SU(2)]/Z2SO(4)= [SU(2)\times SU(2)]/Z_2 symmetry that appears in the scaling limit for the spin-1/2 Heisenberg chain. The emergent SO(5)SO(5) is strong evidence that the phase transition in the 2+1D system is truly continuous, despite the violations of finite-size scaling observed previously in this problem. It also implies surprising relations between correlation functions at the transition. The symmetry enhancement is expected to apply generally to the critical two-component Abelian Higgs model (non-compact CP1CP^1 model). The result indicates that in three dimensions there is an SO(5)SO(5)-symmetric conformal field theory which has no relevant singlet operators, so is radically different to conventional Wilson-Fisher-type conformal field theories.Comment: 4+epsilon pages, 6 figure

    Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models

    Get PDF
    Numerical studies of the N\'eel to valence-bond solid phase transition in 2D quantum antiferromagnets give strong evidence for the remarkable scenario of deconfined criticality, but display strong violations of finite-size scaling that are not yet understood. We show how to realise the universal physics of the Neel-VBS transition in a 3D classical loop model (this includes the interference effect that suppresses N\'eel hedgehogs). We use this model to simulate unprecedentedly large systems (of size L512L\leq 512). Our results are compatible with a direct continuous transition at which both order parameters are critical, and we do not see conventional signs of first-order behaviour. However, we find that the scaling violations are stronger than previously realised and are incompatible with conventional finite-size scaling over the size range studied, even if allowance is made for a weakly/marginally irrelevant scaling variable. In particular, different determinations of the anomalous dimensions ηVBS\eta_\text{VBS} and ηNeˊel\eta_\text{N\'eel} yield very different results. The assumption of conventional finite-size scaling gives estimates which drift to negative values at large LL, in violation of unitarity bounds. In contrast, the behaviour of correlators on scales much smaller than LL is consistent with large positive anomalous dimensions. Barring an unexpected reversal in behaviour at still larger sizes, this implies that the transition, if continuous, must show unconventional finite-size scaling, e.g. from a dangerously irrelevant scaling variable. Another possibility is an anomalously weak first-order transition. By analysing the renormalisation group flows for the non-compact CPn1CP^{n-1} model (nn-component Abelian Higgs model) between two and four dimensions, we give the simplest scenario by which an anomalously weak first-order transition can arise without fine-tuning of the Hamiltonian.Comment: 20 pages, 19 figure

    3D loop models and the CP^{n-1} sigma model

    Full text link
    Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CPn1CP^{n-1} sigma models, where nn is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1,2,3n=1,2,3, and first order transitions for n5n\geq 5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)(2+1)-dimensional quantum magnets.Comment: Published versio

    Random Walks and Anderson Localisation in a Three-Dimensional Class C Network Model

    Full text link
    We study the disorder-induced localisation transition in a three-dimensional network model that belongs to symmetry class C. The model represents quasiparticle dynamics in a gapless spin-singlet superconductor without time-reversal invariance. It is a special feature of network models with this symmetry that the conductance and density of states can be expressed as averages in a classical system of dense, interacting random walks. Using this mapping, we present a more precise numerical study of critical behaviour at an Anderson transition than has been possible previously in any context

    Demonstration experiments for solid state physics using a table top mechanical Stirling refrigerator

    Full text link
    Liquid free cryogenic devices are acquiring importance in basic science and engineering. But they can also lead to improvements in teaching low temperature an solid state physics to graduate students and specialists. Most of the devices are relatively expensive, but small sized equipment is slowly becoming available. Here, we have designed several simple experiments which can be performed using a small Stirling refrigerator. We discuss the measurement of the critical current and temperature of a bulk YBa2Cu3O(7-d) (YBCO) sample, the observation of the levitation of a magnet over a YBCO disk when cooled below the critical temperature and the observation of a phase transition using ac calorimetry. The equipment can be easily handled by students, and also used to teach the principles of liquid free cooling

    Spin quantum Hall effect and plateau transitions in multilayer network models

    Full text link
    We study the spin quantum Hall effect and transitions between Hall plateaus in quasi two-dimensional network models consisting of several coupled layers. Systems exhibiting the spin quantum Hall effect belong to class C in the symmetry classification for Anderson localisation, and for network models in this class there is an established mapping between the quantum problem and a classical one involving random walks. This mapping permits numerical studies of plateau transitions in much larger samples than for other symmetry classes, and we use it to examine localisation in systems consisting of nn weakly coupled layers. Standard scaling ideas lead one to expect nn distinct plateau transitions, but in the case of the unitary symmetry class this conclusion has been questioned. Focussing on a two-layer model, we demonstrate that there are two separate plateau transitions, with the same critical properties as in a single-layer model, even for very weak interlayer coupling.Comment: 5 pages, 6 figure

    A new mixed-integer programming model for irregular strip packing based on vertical slices with a reproducible survey

    Get PDF
    The irregular strip-packing problem, also known as nesting or marker making, is defined as the automatic computation of a non-overlapping placement of a set of non-convex polygons onto a rectangular strip of fixed width and unbounded length, such that the strip length is minimized. Nesting methods based on heuristics are a mature technology, and currently, the only practical solution to this problem. However, recent performance gains of the Mixed-Integer Programming (MIP) solvers, together with the known limitations of the heuristics methods, have encouraged the exploration of exact optimization models for nesting during the last decade. Despite the research effort, the current family of exact MIP models for nesting cannot efficiently solve both large problem instances and instances containing polygons with complex geometries. In order to improve the efficiency of the current MIP models, this work introduces a new family of continuous MIP models based on a novel formulation of the NoFit-Polygon Covering Model (NFP-CM), called NFP-CM based on Vertical Slices (NFP-CM-VS). Our new family of MIP models is based on a new convex decomposition of the feasible space of relative placements between pieces into vertical slices, together with a new family of valid inequalities, symmetry breakings, and variable eliminations derived from the former convex decomposition. Our experiments show that our new NFP-CM-VS models outperform the current state-of-the-art MIP models. Finally, we provide a detailed reproducibility protocol and dataset based on our Java software library as supplementary material to allow the exact replication of our models, experiments, and results

    On modelling planning under uncertainty in manufacturing

    Get PDF
    We present a modelling framework for two-stage and multi-stage mixed 0-1 problems under uncertainty for strategic Supply Chain Management, tactical production planning and operations assignment and scheduling. A scenario tree based scheme is used to represent the uncertainty. We present the Deterministic Equivalent Model of the stochastic mixed 0-1 programs with complete recourse that we study. The constraints are modelled by compact and splitting variable representations via scenarios

    Charge occupancy of two interacting electrons on artificial molecules - exact results

    Full text link
    We present exact solutions for two interacting electrons on an artificial atom and on an artificial molecule made by one and two (single level) quantum dots connected by ideal leads. Specifically, we calculate the accumulated charge on the dots as function of the gate voltage, for various strengths of the electron-electron interaction and of the hybridization between the dots and the (one-dimensional) leads. With increasing of the (negative) gate voltage, the accumulated charge in the two-electron ground state increases in gradual steps from 0 to 1 and then to 2. The value 0 represents an "insulating" state, where both electrons are bound to shallow states on the impurities. The value of 1 corresponds to a "metal", with one electron localized on the dots and the other extended on the leads. The value of 2 corresponds to another "insulator", with both electrons strongly localized. The width of the "metallic" regime diverges with strength of the electron-electron interaction for the single dot, but remains very narrow for the double dot. These results are contrasted with the simple Coulomb blockade picture.Comment: 12 pages, 7 figure

    A New Ant Colony-Based Methodology for Disaster Relief

    Get PDF
    Humanitarian logistics in response to large scale disasters entails decisions that must be taken urgently and under high uncertainty. In addition, the scarcity of available resources sometimes causes the involved organizations to suffer assaults while transporting the humanitarian aid. This paper addresses the last mile distribution problem that arises in such an insecure environment, in which vehicles are often forced to travel together forming convoys for security reasons. We develop an elaborated methodology based on Ant Colony Optimization that is applied to two case studies built from real disasters, namely the 2010 Haiti earthquake and the 2005 Niger famine. There are very few works in the literature dealing with problems in this context, and that is the research gap this paper tries to fill. Furthermore, the consideration of multiple criteria such as cost, time, equity, reliability, security or priority, is also an important contribution to the literature, in addition to the use of specialized ants and effective pheromones that are novel elements of the algorithm which could be exported to other similar problems. Computational results illustrate the efficiency of the new methodology, confirming it could be a good basis for a decision support tool for real operations
    corecore