305 research outputs found

    Saturn's atmospheric temperature structure and heat budget

    Get PDF
    The effective temperature of Saturn from 30°S to 10°N is 96.5 ± 2.5 K. This value is 1.9 K higher than our preliminary estimate (Ingersoll et al., 1980). The atmospheric mole fraction of H_2 relative to H_2 + He is 90 ± 3%. This value is derived by comparing infrared and radio occultation data (Kliore et al., this issue) for the same latitude. The high value of the effective temperature suggests that Saturn has an additional energy source besides cooling and contraction. The high mole fraction of H_2 suggests that separation of heavier He toward the core may be supplying the additional energy. Atmospheric temperatures in the 60- to 600-mbar range are 2.5 K lower within 7° of the equator than at higher latitudes. An almost isothermal layer exists between 60 and 160 mbar at all latitudes

    Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H2_2 from Cassini Far-IR Spectroscopy

    Full text link
    Far-IR 16-1000 μ\mum spectra of Saturn's hydrogen-helium continuum measured by Cassini's Composite Infrared Spectrometer (CIRS) are inverted to construct a near-continuous record of upper tropospheric (70-700 mbar) temperatures and para-H2_2 fraction as a function of latitude, pressure and time for a third of a Saturnian year (2004-2014, from northern winter to northern spring). The thermal field reveals evidence of reversing summertime asymmetries superimposed onto the belt/zone structure. The temperature structure that is almost symmetric about the equator by 2014, with seasonal lag times that increase with depth and are qualitatively consistent with radiative climate models. Localised heating of the tropospheric hazes (100-250 mbar) create a distinct perturbation to the temperature profile that shifts in magnitude and location, declining in the autumn hemisphere and growing in the spring. Changes in the para-H2_2 (fpf_p) distribution are subtle, with a 0.02-0.03 rise over the spring hemisphere (200-500 mbar) perturbed by (i) low-fpf_p air advected by both the springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of high-fpf_p air at northern high latitudes, responsible for a developing north-south asymmetry in fpf_p. Conversely, the shifting asymmetry in the para-H2_2 disequilibrium primarily reflects the changing temperature structure (and the equilibrium distribution of fpf_p), rather than actual changes in fpf_p induced by chemical conversion or transport. CIRS results interpolated to the same point in the seasonal cycle as re-analysed Voyager-1 observations show qualitative consistency, with the exception of the tropical tropopause near the equatorial zones and belts, where downward propagation of a cool temperature anomaly associated with Saturn's stratospheric oscillation could potentially perturb tropopause temperatures, para-H2_2 and winds. [ABRIDGED]Comment: Preprint accepted for publication in Icarus, 29 pages, 18 figure

    Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007

    Full text link
    Imaging and spectroscopy of Neptune's thermal infrared emission is used to assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is ±\pm5 K at 1 mbar and ±\pm3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {\mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).Comment: 35 pages, 19 figures. Accepted for publication in Icaru

    Impact of comet Shoemaker-Levy 9 on Jupiter

    Get PDF
    Three-dimensional numerical simulations of the impact of Comet Shoemaker-Levy 9 on Jupiter and the resulting vapor plume expansion were conducted using the Smoothed Particle Hydrodynamics (SPH) method. An icy body with a diameter of 2 km can penetrate to an altitude of -350 km (0 km = 1 bar) and most of the incident kinetic energy is transferred to the atmosphere between -100 km to -250 km. This energy is converted to potential energy of the resulting gas plume. The unconfined plume expands vertically and has a peak radiative power approximately equal to the total radiation from Jupiter's disc. The plume rises a few tens of atmospheric scale heights in ∼10² seconds. The rising plume reaches the altitude of ∼3000 km, but no atmospheric gas is accelerated to the escape velocity (∼60 km/s)

    Infrared observations of planetary atmospheres

    Get PDF
    The goal of this research in to obtain infrared data on planetary atmospheres which provide information on several aspects of structure and composition. Observations include direct mission real-time support as well as baseline monitoring preceding mission encounters. Besides providing a broader information context for spacecraft experiment data analysis, observations will provide the quantitative data base required for designing optimum remote sensing sequences and evaluating competing science priorities. In the past year, thermal images of Jupiter and Saturn were made near their oppositions in order to monitor long-term changes in their atmospheres. Infrared images of the Jovian polar stratospheric hot spots were made with IUE observations of auroral emissions. An exploratory 5-micrometer spectrum of Uranus was reduced and accepted for publication. An analysis of time-variability of temperature and cloud properties of the Jovian atomsphere was made. Development of geometric reduction programs for imaging data was initiated for the sun workstation. Near-infrared imaging observations of Jupiter were reduced and a preliminary analysis of cloud properties made. The first images of the full disk of Jupiter with a near-infrared array camera were acquired. Narrow-band (10/cm) images of Jupiter and Saturn were obtained with acousto-optical filters

    The Origin of Nitrogen on Jupiter and Saturn from the 15^{15}N/14^{14}N Ratio

    Full text link
    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA's Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues (15^{15}N/14^{14}N) can reveal insights into the molecular carrier (e.g., as N2_2 or NH3_3) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm−1^{-1}) that were relatively clear of terrestrial atmospheric contamination and contained close features of 14^{14}NH3_3 and 15^{15}NH3_3, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter's 15^{15}N/14^{14}N ratio (in the range from 1.4×10−31.4\times10^{-3} to 2.5×10−32.5\times10^{-3}), which is consistent with both previous space-based studies and with the primordial value of the protosolar nebula. On Saturn, we present the first upper limit on the 15^{15}N/14^{14}N ratio of no larger than 2.0×10−32.0\times10^{-3} for the 900-cm−1^{-1} channel and a less stringent requirement that the ratio be no larger than 2.8×10−32.8\times10^{-3} for the 960-cm−1^{-1} channel (1σ1\sigma confidence). Specifically, the data rule out strong 15^{15}N-enrichments such as those observed in Titan's atmosphere and in cometary nitrogen compounds. To the extent possible with ground-based radiometric uncertainties, the saturnian and jovian 15^{15}N/14^{14}N ratios appear indistinguishable, implying that 15^{15}N-enriched ammonia ices could not have been a substantial contributor to the bulk nitrogen inventory of either planet, favouring the accretion of primordial N2_2 from the gas phase or as low-temperature ices.Comment: 33 pages, 19 figures, manuscript accepted for publication in Icaru

    Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    Get PDF
    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5 microns. ACM recovers spatially-resolved atmospheric temperatures in Titan's troposphere via 3- and 5-microns spectral transitions. Together, the mixing ratio profiles and the aerosol distributions are utilized to investigate the photochemistry of the stratosphere and consequent formation processes for aerosols. Finally, ring opacities, observed during solar occultations and in reflected sunlight, provide a measurement of the particle size and distribution of ring material. ACM will be the first high spectral resolution mapping spectrometer on an outer planet mission for atmospheric studies while retaining a high resolution spatial mapping capability. ACM, thus, opens an entirely new range of orbital scientific studies of the origin, physio-chemical evolution and structure of the Saturn and Titan atmospheres. ACM provides high angular resolution spectral maps, viewing nadir and near-limb thermal radiation and reflected sunlight; sounds planetary limbs, spatially resolving vertical profiles to several atmospheric scale heights; and measures solar occultations, mapping both atmospheres and rings. ACM's high spectral and spatial resolution mapping capability is achieved with a simplified Fourier Transform spectrometer with a no-moving parts, physically compact design. ACM's simplicity guarantees an inherent stability essential for reliable performance throughout the lengthy Cassini Orbiter mission
    • …
    corecore