105 research outputs found

    Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations

    Get PDF
    BACKGROUND: The in vitro pharmacology of baricitinib, upadacitinib, and tofacitinib was evaluated to understand differences among these JAK inhibitors (JAKis) at the cellular level. METHODS: Peripheral blood mononuclear cells from healthy donors were incubated with different JAKis, levels of phosphorylated signal transducer and activator of transcription (pSTAT) were measured following cytokine stimulation, and half maximum inhibitory concentration (IC50) values were calculated in phenotypically gated leukocyte subpopulations. Therapeutic dose relevance of the in vitro analysis was assessed using calculated mean concentration-time profiles over 24 h obtained from JAKi-treated subjects. Time above IC50 and average daily percent inhibition of pSTAT formation were calculated for each JAKi, cytokine, and cell type. RESULTS: Distinct JAKis displayed different in vitro pharmacologic profiles. For example, tofacitinib and upadacitinib were the most potent inhibitors of the JAK1/3-dependent cytokines tested (interleukin [IL]-2, IL-4, IL-15, and IL-21) with lower IC50 values and increased time above IC50 translating to a greater overall inhibition of STAT signaling during the dosing interval. All JAKis tested inhibited JAK1/2-dependent cytokines (e.g., IL-6 and interferon [IFN]-γ), the JAK1/tyrosine kinase 2 (TYK2)-dependent cytokines IL-10 and IFN-α, the JAK2/2-dependent cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the JAK2/TYK2-dependent cytokine granulocyte colony-stimulating factor (G-CSF), but often to significantly differing degrees. CONCLUSIONS: Different JAKis modulated distinct cytokine pathways to varying degrees, and no agent potently or continuously inhibited an individual cytokine signaling pathway throughout the dosing interval. Notably, baricitinib inhibited JAK1/3 signaling to a lesser extent than upadacitinib and tofacitinib, while upadacitinib, baricitinib, and tofacitinib inhibited the signaling of JAK2/2-dependent cytokines, including GM-CSF and IL-3, as well as the signaling of the JAK2/TYK2-dependent cytokine G-CSF

    Fc receptor-like 5 and anti-CD20 treatment response in granulomatosis with polyangiitis and microscopic polyangiitis

    Get PDF
    BACKGROUND. Baseline expression of FCRL5, a marker of naive and memory B cells, was shown to predict response to rituximab (RTX) in rheumatoid arthritis. This study investigated baseline expression of FCRL5 as a potential biomarker of clinical response to RTX in granulomatosis with polyangiitis (CPA) and microscopic polyangiitis (MPA). METHODS. A previously validated quantitative PCR-based (qPCR-based) platform was used to assess FCRL5 expression in patients with GPA/MPA (RAVE trial, NCT00104299). RESULTS. Baseline FCRL5 expression was significantly higher in patients achieving complete remission (CR) at 6,12, and 18 months, independent of other clinical and serological variables, among those randomized to RTX but not cyclophosphamide-azathioprine (CYC/AZA). Patients with baseline FCRL5 expression >= 0.01 expression units (termed FCRL5(hi)) exhibited significantly higher CR rates at 6,12, and 18 months as compared with FCRL5(lo) subjects (84% versus 57% [P = 0.016], 68% versus 40% [P = 0.02], and 68% versus 29% [P = 0.0009], respectively). CONCLUSION. Our data taken together suggest that FCRL5 is a biomarker of B cell lineage associated with increased achievement and maintenance of complete remission among patients treated with RTX and warrant further investigation in a prospective manner

    Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes

    Get PDF
    Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. Recent studies have greatly expanded the number of established SLE risk alleles, but the distribution of multiple risk alleles in cases versus controls and their relationship to subphenotypes have not been studied. We studied 22 SLE susceptibility polymorphisms with previous genome-wide evidence of association (p<5×10−8) in 1919 SLE cases from 9 independent Caucasian SLE case series and 4813 independent controls. The mean number of risk alleles in cases was 15.1 (SD 3.1) while the mean in controls was 13.1 (SD 2.8), with trend p = 4×10−128. We defined a genetic risk score (GRS) for SLE as the number of risk alleles with each weighted by the SLE risk odds ratio (OR). The OR for high-low GRS tertiles, adjusted for intra-European ancestry, sex, and parent study, was 4.4 (95% CI 3.8–5.1). We studied associations of individual SNPs and the GRS with clinical manifestations for the cases: age at diagnosis, the 11 American College of Rheumatology classification criteria, and double-stranded DNA antibody (anti-dsDNA) production. Six subphenotypes were significantly associated with the GRS, most notably anti-dsDNA (ORhigh-low = 2.36, p = 9e−9), the immunologic criterion (ORhigh-low = 2.23, p = 3e−7), and age at diagnosis (ORhigh-low = 1.45, p = 0.0060). Finally, we developed a subphenotype-specific GRS (sub-GRS) for each phenotype with more power to detect cumulative genetic associations. The sub-GRS was more strongly associated than any single SNP effect for 5 subphenotypes (the above plus hematologic disorder and oral ulcers), while single loci are more significantly associated with renal disease (HLA-DRB1, OR = 1.37, 95% CI 1.14–1.64) and arthritis (ITGAM, OR = 0.72, 95% CI 0.59–0.88). We did not observe significant associations for other subphenotypes, for individual loci or the sub-GRS. Thus our analysis categorizes SLE subphenotypes into three groups: those having cumulative, single, and no known genetic association with respect to the currently established SLE risk loci

    Whole scalp resting state EEG of oscillatory brain activity shows no parametric relationship with psychoacoustic and psychosocial assessment of tinnitus: a repeated measures study

    Get PDF
    Tinnitus is a perception of sound that can occur in the absence of an external stimulus. A brief review of electroencephalography (EEG) and magnetoencephalography (MEG) literature demonstrates that there is no clear relationship between tinnitus presence and frequency band power in whole scalp or source oscillatory activity. Yet a preconception persists that such a relationship exists and that resting state EEG could be utilised as an outcome measure for clinical trials of tinnitus interventions, e.g. as a neurophysiological marker of therapeutic benefit. To address this issue, we first examined the test-retest correlation of EEG band power measures in tinnitus patients (n ¼ 42). Second we examined the evidence for a parametric relationship between numerous commonly used tinnitus variables (psychoacoustic and psychosocial) and whole scalp EEG power spectra, directly and after applying factor reduction techniques. Test-retest correlation for both EEG band power measures and tinnitus variables were high. Yet we found no relationship between whole scalp EEG band powers and psychoacoustic or psychosocial variables. We conclude from these data that resting state whole scalp EEG should not be used as a biomarker for tinnitus and that greater caution should be exercised in regard to reporting of findings to avoid confirmation bias. The data was collected during a randomised controlled trial registered at ClinicalTrials.gov (Identifier: NCT01541969)

    Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. A polymorphism in the STAT4 gene has recently been established as a risk factor for SLE, but the relationship with specific SLE subphenotypes has not been studied. We studied 137 SNPs in the STAT4 region genotyped in 4 independent SLE case series (total n = 1398) and 2560 healthy controls, along with clinical data for the cases. Using conditional testing, we confirmed the most significant STAT4 haplotype for SLE risk. We then studied a SNP marking this haplotype for association with specific SLE subphenotypes, including autoantibody production, nephritis, arthritis, mucocutaneous manifestations, and age at diagnosis. To prevent possible type-I errors from population stratification, we reanalyzed the data using a subset of subjects determined to be most homogeneous based on principal components analysis of genome-wide data. We confirmed that four SNPs in very high LD (r2 = 0.94 to 0.99) were most strongly associated with SLE, and there was no compelling evidence for additional SLE risk loci in the STAT4 region. SNP rs7574865 marking this haplotype had a minor allele frequency (MAF) = 31.1% in SLE cases compared with 22.5% in controls (OR = 1.56, p = 10−16). This SNP was more strongly associated with SLE characterized by double-stranded DNA autoantibodies (MAF = 35.1%, OR = 1.86, p<10−19), nephritis (MAF = 34.3%, OR = 1.80, p<10−11), and age at diagnosis<30 years (MAF = 33.8%, OR = 1.77, p<10−13). An association with severe nephritis was even more striking (MAF = 39.2%, OR = 2.35, p<10−4 in the homogeneous subset of subjects). In contrast, STAT4 was less strongly associated with oral ulcers, a manifestation associated with milder disease. We conclude that this common polymorphism of STAT4 contributes to the phenotypic heterogeneity of SLE, predisposing specifically to more severe disease

    Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production

    Get PDF
    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti-dsDNA autoantibody production, a SLE-related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti-dsDNA autoantibody positive (anti-dsDNA +, n = 811) and anti-dsDNA autoantibody negative (anti-dsDNA -, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti-dsDNA + SLE. Far fewer and weaker associations were observed for anti-dsDNA - SLE. For example, rs7574865 in STAT4 had an OR for anti-dsDNA + SLE of 1.77 (95% CI 1.57-1.99, p = 2.0E-20) compared to an OR for anti-dsDNA - SLE of 1.26 (95% CI 1.12-1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti-dsDNA + SLE and were not associated with anti-dsDNA - SLE. In conclusion, we identified differential genetic associations with SLE based on anti-dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti-dsDNA - SLE
    • …
    corecore