11,848 research outputs found

    Zero Temperature Phases of the Electron Gas

    Get PDF
    The stability of different phases of the three-dimensional non-relativistic electron gas is analyzed using stochastic methods. With decreasing density, we observe a {\it continuous} transition from the paramagnetic to the ferromagnetic fluid, with an intermediate stability range (25±5≤rs≤35±525\pm 5 \leq r_s\leq 35 \pm 5) for the {\it partially} spin-polarized liquid. The freezing transition into a ferromagnetic Wigner crystal occurs at rs=65±10r_s=65 \pm 10. We discuss the relative stability of different magnetic structures in the solid phase, as well as the possibility of disordered phases.Comment: 4 pages, REVTEX, 3 ps figure

    Ellerman bombs and UV bursts: transient events in chromospheric current sheets

    Full text link
    Ellerman bombs (EBs) and UV bursts are both brightenings related to flux emergence regions and specifically to magnetic flux of opposite polarity that meet in the photosphere. These two reconnection-related phenomena, nominally formed far apart, occasionally occur in the same location and at the same time, thus challenging our understanding of reconnection and heating of the lower solar atmosphere. We consider the formation of an active region, including long fibrils and hot and dense coronal plasma. The emergence of a untwisted magnetic flux sheet, injected 2.52.5~Mm below the photosphere, is studied as it pierces the photosphere and interacts with the preexisting ambient field. Specifically, we aim to study whether EBs and UV bursts are generated as a result of such flux emergence and examine their physical relationship. The Bifrost radiative magnetohydrodynamics code was used to model flux emerging into a model atmosphere that contained a fairly strong ambient field, constraining the emerging field to a limited volume wherein multiple reconnection events occur as the field breaks through the photosphere and expands into the outer atmosphere. Synthetic spectra of the different reconnection events were computed using the 1.51.5D RH code and the fully 3D MULTI3D code. The formation of UV bursts and EBs at intensities and with line profiles that are highly reminiscent of observed spectra are understood to be a result of the reconnection of emerging flux with itself in a long-lasting current sheet that extends over several scale heights through the chromosphere. Synthetic diagnostics suggest that there are no compelling reasons to assume that UV bursts occur in the photosphere. Instead, EBs and UV bursts are occasionally formed at opposite ends of a long current sheet that resides in an extended bubble of cool gas.Comment: 10 pages, 8 figures, accepted by A&

    Water-ice driven activity on Main-Belt Comet P/2010 A2 (LINEAR) ?

    Full text link
    The dust ejecta of Main-Belt Comet P/2010 A2 (LINEAR) have been observed with several telescopes at the at the Observatorio del Roque de los Muchachos on La Palma, Spain. Application of an inverse dust tail Monte Carlo method to the images of the dust ejecta from the object indicates that a sustained, likely water-ice driven, activity over some eight months is the mechanism responsible for the formation of the observed tail. The total amount of dust released is estimated to be 5E7 kg, which represents about 0.3% of the nucleus mass. While the event could have been triggered by a collision, this cannot be decided from the currently available data.Comment: Accepted for ApJ Letter

    Efeito da concentração de compostos do pré-tratamento de biomassa florestal no crescimento de Saccharomyces cerevisiae industrial.

    Get PDF
    Editores técnicos: Marcílio José Thomazini, Elenice Fritzsons, Patrícia Raquel Silva, Guilherme Schnell e Schuhli, Denise Jeton Cardoso, Luziane Franciscon. EVINCI. Resumos

    Acceptance of fluorescence detectors and its implication in energy spectrum inference at the highest energies

    Full text link
    Along the years HiRes and AGASA experiments have explored the fluorescence and the ground array experimental techniques to measure extensive air showers, being both essential to investigate the ultra-high energy cosmic rays. However, such Collaborations have published contradictory energy spectra for energies above the GZK cut-off. In this article, we investigate the acceptance of fluorescence telescopes to different primary particles at the highest energies. Using CORSIKA and CONEX shower simulations without and with the new pre-showering scheme, which allows photons to interact in the Earth magnetic field, we estimate the aperture of the HiRes-I telescope for gammas, iron nuclei and protons primaries as a function of the number of simulated events and primary energy. We also investigate the possibility that systematic differences in shower development for hadrons and gammas could mask or distort vital features of the cosmic ray energy spectrum at energies above the photo-pion production threshold. The impact of these effects on the true acceptance of a fluorescence detector is analyzed in the context of top-down production models

    Gravitational Properties of Monopole Spacetimes Near the Black Hole Threshold

    Full text link
    Although nonsingular spacetimes and those containing black holes are qualitatively quite different, there are continuous families of configurations that connect the two. In this paper we use self-gravitating monopole solutions as tools for investigating the transition between these two types of spacetimes. We show how causally distinct regions emerge as the black hole limit is achieved, even though the measurements made by an external observer vary continuously. We find that near-critical solutions have a naturally defined entropy, despite the absence of a true horizon, and that this has a clear connection with the Hawking-Bekenstein entropy. We find that certain classes of near-critical solutions display naked black hole behavior, although they are not truly black holes at all. Finally, we present a numerical simulation illustrating how an incident pulse of matter can induce the dynamical collapse of a monopole into an extremal black hole. We discuss the implications of this process for the third law of black hole thermodynamics.Comment: 23 pages, 4 figures RevTe

    On the Hierarchical Preconditioning of the PMCHWT Integral Equation on Simply and Multiply Connected Geometries

    Full text link
    We present a hierarchical basis preconditioning strategy for the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation considering both simply and multiply connected geometries.To this end, we first consider the direct application of hierarchical basis preconditioners, developed for the Electric Field Integral Equation (EFIE), to the PMCHWT. It is notably found that, whereas for the EFIE a diagonal preconditioner can be used for obtaining the hierarchical basis scaling factors, this strategy is catastrophic in the case of the PMCHWT since it leads to a severly ill-conditioned PMCHWT system in the case of multiply connected geometries. We then proceed to a theoretical analysis of the effect of hierarchical bases on the PMCHWT operator for which we obtain the correct scaling factors and a provably effective preconditioner for both low frequencies and mesh refinements. Numerical results will corroborate the theory and show the effectiveness of our approach
    • …
    corecore