114 research outputs found

    Electrical conductivity of natural rubber cellulose II nanocomposites

    Full text link
    [EN] Nanocomposite materials obtained from natural rubber (NR) reinforced with different amounts of cellulose II (cell) nanoparticles (in the range of 0 to 30 phr) are studied by dielectric spectroscopy (DS) in a broad temperature range (¿150 to 150 °C). For comparative purposes, the pure materials, NR and cell, are also investigated. An analysis of the cell content effect on the conductive properties of the nanocomposites was carried out. The dielectric spectra exhibit conductivity phenomena at low frequencies and high temperatures: Maxwell¿Wagner¿ Sillars (MWS) and electrode polarization (EP) conductive processes were observed in the nanocomposite samples.We thank Professor Regina Nunes of the Instituto de Macromoleculas Eloisa Mano (Universidade Federal do Rio de Janeiro) for providing us the NR and NR-cell samples. This work was financially supported by DGCYT through grant MAT2012-33483.Ortiz Serna, MP.; Carsí Rosique, M.; Redondo Foj, MB.; Sanchis Sánchez, MJ. (2014). Electrical conductivity of natural rubber cellulose II nanocomposites. Journal of Non-Crystalline Solids. 405:180-187. https://doi.org/10.1016/j.jnoncrysol.2014.09.026S18018740

    Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair

    Get PDF
    Background: Hostile environment around the lesion site following spinal cord injury (SCI) prevents the re-establishment of neuronal tracks, thus significantly limiting the regenerative capability. Electroconductive scaffolds are emerging as a promising option for SCI repair, though currently available conductive polymers such as polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) present poor biofunctionality and biocompatibility, thus limiting their effective use in SCI tissue engineering (TE) treatment strategies. Methods: PEDOT NPs were synthesized via chemical oxidation polymerization in miniemulsion. The conductive PEDOT NPs were incorporated with gelatin and hyaluronic acid (HA) to create gel:HA:PEDOT-NPs scaffolds. Morphological analysis of both PEDOT NPs and scaffolds was conducted via SEM. Further characterisation included dielectric constant and permittivity variances mapped against morphological changes after crosslinking, Young’s modulus, FTIR, DLS, swelling studies, rheology, in-vitro, and in-vivo biocompatibility studies were also conducted. Results: Incorporation of PEDOT NPs increased the conductivity of scaffolds to 8.3 × 10–4 ± 8.1 × 10–5 S/cm. The compressive modulus of the scaffold was tailored to match the native spinal cord at 1.2 ± 0.2 MPa, along with controlled porosity. Rheological studies of the hydrogel showed excellent 3D shear-thinning printing capabilities and shape fidelity post-printing. In-vitro studies showed the scaffolds are cytocompatible and an in-vivo assessment in a rat SCI lesion model shows glial fibrillary acidic protein (GFAP) upregulation not directly in contact with the lesion/implantation site, with diminished astrocyte reactivity. Decreased levels of macrophage and microglia reactivity at the implant site is also observed. This positively influences the re-establishment of signals and initiation of healing mechanisms. Observation of axon migration towards the scaffold can be attributed to immunomodulatory properties of HA in the scaffold caused by a controlled inflammatory response. HA limits astrocyte activation through its CD44 receptors and therefore limits scar formation. This allows for a superior axonal migration and growth towards the targeted implantation site through the provision of a stimulating microenvironment for regeneration. Conclusions: Based on these results, the incorporation of PEDOT NPs into Gel:HA biomaterial scaffolds enhances not only the conductive capabilities of the material, but also the provision of a healing environment around lesions in SCI. Hence, gel:HA:PEDOT-NPs scaffolds are a promising TE option for stimulating regeneration for SCI.The authors would like to thank the funding provided by the Irish Research Council through the Irish Research Council Enterprise Partnership Scheme with Johnson and Johnson (EPSPG/2020/78), as well as the Irish Fulbright Commission

    Poly (lactic acid)/D-limonene/ZnO bio-nanocomposites with antimicrobial properties

    Get PDF
    Antimicrobial films of poly (lactic acid) (PLA)/D-limonene/zinc oxide (ZnO)-based bio-nanocomposites were prepared via melt compounding and subsequent thermocompression. D-limonene was incorporated at concentrations of 10 or 20 wt%, and ZnO pure nanoparticles and those organically modified with oleic acid (O-ZnO), with an average diameter of 13.5 nm, were included at concentrations of 3, 5, and 8 wt%. The plasticizing effect of D-Limonene was corroborated by a decrease in the glass transition temperature compared to pure PLA. The presence of ZnO and O-ZnO in the PLA matrix promoted a slight increase in the degree of crystallinity due to its nucleant performance. Although ZnO and O-ZnO induced lower thermal stability and slightly decreased microhardness in the composites, excellent antimicrobial performance was demonstrated. Both ZnO and O-ZnO nanocomposites reached 99.9% of effectiveness for nanoparticles content above 5 wt%, regardless of the source of irradiation, D-limonene concentration, and nanoparticle modification. Therefore, these bio-nanocomposites will allow for future advances in sustainable antimicrobial materials for the medical or food packaging fields.DICYT, Grant/Award Number: Project 022041ZR_POSTDOCT; Fondo Nacional de Desarrollo Científico y Tecnológico,Grant/Award Numbers: 1170226, 320029

    Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms

    Get PDF
    This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a discretization technique of Veselov. The general idea for these variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators

    An experimental study of dynamic behaviour of graphite polycarbonatediol polyurethane composites for protective coatings

    Full text link
    Segmented polycarbonatediol polyurethane (PUPH) has been synthesized and modified with different amounts of graphite conductive filler (from 0 to 50 wt%). Thermal and dynamical thermal analysis of the composites clearly indicates changes in the polyurethane relaxations upon addition of graphite. Broadband dielectric spectroscopy has been used to study the dielectric properties of the (PUPH) and one composite in the frequency range from 10−2 to 107 Hz and in the temperature window of −140 to 170 ◦C. Relaxation processes associated with different molecular motions and conductivity phenomena (Maxwell–Wagner–Sillars and electrode polarization) are discussed and related to the graphite contentWe acknowledge the financial support of the Ministry of Finances and Competitiveness through the Grant CDS2010-0044 belonging to the "Consolider-Ingenio Programme" and for the Grant MAT2012-33483. The authors thank UBE Chem Eur for the PCD supply for this work.Gómez, C.; Culebras, M.; Cantarero Saez, A.; Redondo Foj, MB.; Ortiz Serna, MP.; Carsí Rosique, M.; Sanchis Sánchez, MJ. (2013). An experimental study of dynamic behaviour of graphite polycarbonatediol polyurethane composites for protective coatings. Applied Surface Science. 275:295-302. https://doi.org/10.1016/j.apsusc.2012.12.108S29530227

    Hemostatic powder TC-325 treatment of malignancy-related upper gastrointestinal bleeds: International registry outcomes

    Get PDF
    BACKGROUND AND AIM: Upper gastrointestinal tumors account for 5% of upper gastrointestinal bleeds. These patients are challenging to treat due to the diffuse nature of the neoplastic bleeding lesions, high rebleeding rates, and significant transfusion requirements. TC-325 (Cook Medical, North Carolina, USA) is a hemostatic powder for gastrointestinal bleeding. The aim of this study was to examine the outcomes of upper gastrointestinal bleeds secondary to tumors treated with Hemospray therapy. METHODS: Data were prospectively collected on the use of Hemospray from 17 centers. Hemospray was used during emergency endoscopy for upper gastrointestinal bleeds secondary to tumors at the discretion of the endoscopist as a monotherapy, dual therapy with standard hemostatic techniques, or rescue therapy. RESULTS: One hundred and five patients with upper gastrointestinal bleeds secondary to tumors were recruited. The median Blatchford score at baseline was 10 (interquartile range [IQR], 7-12). The median Rockall score was 8 (IQR, 7-9). Immediate hemostasis was achieved in 102/105 (97%) patients, 15% of patients had a 30-day rebleed, 20% of patients died within 30 days (all-cause mortality). There was a significant improvement in transfusion requirements following treatment (P < 0.001) when comparing the number of units transfused 3 weeks before and after treatment. The mean reduction was one unit per patient. CONCLUSIONS: Hemospray achieved high rates of immediate hemostasis, with comparable rebleed rates following treatment of tumor-related upper gastrointestinal bleeds. Hemospray helped in improving transfusion requirements in these patients. This allows for patient stabilization and bridges towards definitive surgery or radiotherapy to treat the underlying tumor

    Withdrawal of infliximab therapy in ankylosing spondylitis in persistent clinical remission, results from the REMINEA study

    Get PDF
    Altres ajuts: This work is conducted under the umbrella of the Rheumatology Society of Catalonia and supported by Merck Research Laboratories.Background: Recent data suggest that anti-TNF doses can be reduced in ankylosing spondylitis (AS) patients. Some authors even propose withdrawing treatment in patients in clinical remission; however, at present there is no evidence to support this. Objective: To assess how long AS patients with persistent clinical remission remained free of flares after anti-TNF withdrawal and to evaluate the effects of treatment reintroduction. We also analyze the characteristics of patients who did not present clinical relapse. Methods: Multicenter, prospective, observational study of a cohort of patients with active AS who had received infliximab as a first anti-TNF treatment and who presented persistent remission (more than 6 months). We recorded at baseline and every 6-8 weeks over the 12-month period the age, gender, disease duration, peripheral arthritis or enthesitis, HLA-B27 status, BASDAI, CRP, ESR, BASFI, and three visual analogue scales, spine global pain, spinal night time pain, and patient's global assessment. Results: Thirty-six out of 107 patients (34%) presented persistent remission and were included in our study. After treatment withdrawal, 21 of these 36 patients (58%) presented clinical relapse during follow-up. Infliximab therapy was reintroduced and only 52% achieved clinical remission, as they had before the discontinuation of infliximab; in an additional 10%, reintroduction of infliximab was ineffective, obliging us to change the anti-TNF therapy. No clinical or biological factors were associated with the occurrence of relapse during the follow-up. Conclusions: Two thirds of patients in clinical remission presented clinical relapse shortly after infliximab withdrawal. Although the reintroduction of infliximab treatment was safe, half of the patients did not present the same clinical response that they had achieved prior to treatment withdrawal

    Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy

    Full text link
    [EN] A poly(vinylpyrrolidone-co-butyl acrylate) (60VP-40BA) membrane is synthesized as a tractable and hydrophilic material, obtaining a water-swelling percentage around 60%. An investigation of molecular mobility by means of differential scanning calorimetry, dynamic mechanical analysis and broadband dielectric relaxation spectroscopy (DRS) is fulfilled in the dry membrane. Dielectric and viscoelastic relaxation measurements are carried out on the 60VP-40BA sample at several frequencies between -150 and 150 degrees C. The dielectric spectrum shows several relaxation processes labelled gamma, beta and alpha in increasing order of temperature, whereas in the mechanical spectrum only the beta and alpha relaxation processes are completely defined. In the dielectric measurements, conductive contributions overlap the alpha-relaxation. The apparent activation energies have similar values for the beta-relaxation in both, the mechanical and the dielectric measurements. The beta process is a Johari-Golstein secondary relaxation and it is related to the local motions of the pyrrolidone group accompanied by the motion of the segments of the polymer backbone. The gamma process is connected with the butyl unit's motions, both located in the side chains of the polymer.BRF, MC, PO and MJS are grateful to CICYT for grant MAT2012-33483. FG and JMG thank the Spanish Ministerio de Economia y Competitividad-FEDER (MAT2011-22544) and the Consejeria de Educacion-Junta de Castilla y Leon (BU001A10-2).Redondo Foj, MB.; Carsí Rosique, M.; Ortiz Serna, MP.; Sanchis Sánchez, MJ.; García, FC.; García. José Miguel (2013). Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 46(29):295304-1-295304-12. https://doi.org/10.1088/0022-3727/46/29/295304S295304-1295304-12462

    Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes

    Get PDF
    Phenylpropanoids are a diverse chemical class with immense health benefits that are biosynthesized from the aromatic amino acid L-phenylalanine. This article reviews the progress for accessing variation in phenylpropanoids in germplasm collections, the genetic and molecular basis of phenylpropanoid biosynthesis, and the development of cultivars dense in seed-phenylpropanoids. Progress is also reviewed on high-throughput assays, factors that influence phenylpropanoids, the site of phenylpropanoids accumulation in seed, Genotype × Environment interactions, and on consumer attitudes for the acceptance of staple foods rich in phenylpropanoids. A paradigm shift was noted in barley, maize, rice, sorghum, soybean, and wheat, wherein cultivars rich in phenylpropanoids are grown in Europe and North and Central America. Studies have highlighted some biological constraints that need to be addressed for development of high-yielding cultivars that are rich in phenylpropanoids. Genomics-assisted breeding is expected to facilitate rapid introgression into improved genetic backgrounds by minimizing linkage drag. More research is needed to systematically characterize germplasm pools for assessing variation to support crop genetic enhancement, and assess consumer attitudes to foods rich in phenylpropanoids
    corecore