400 research outputs found

    Ideal Female and Male Bodies: An Analysis of College Students\u27 Drawings

    Get PDF
    This study investigates perceptions of gendered body ideals through an analysis of college students\u27 drawings. A sample of 94 college students participated by drawing their image of the ideal female and male bodies. The drawings were analyzed through a gender lens, whereby each participant‟s male and female bodies were compared to determine the features participants used to indicate gender in their ideal bodies. Four major themes emerged that distinguished ideal female and male bodies from each other: (1) body shape, (2) body size, (3) clothing and accessories, and (4) gender roles. An additional theme includes a small group of participants who challenged gendered body ideals. The results are discussed in the broader context of gender and the body

    Out of the clinic, into the home: The in-home use of phantom motor execution aided by machine learning and augmented reality for the treatment of phantom limb pain

    Get PDF
    Purpose: Phantom motor execution (PME) facilitated by augmented/virtual reality (AR/ VR) and serious gaming (SG) has been proposed as a treatment for phantom limb pain (PLP). Evidence of the efficacy of this approach was obtained through a clinical trial involving individuals with chronic intractable PLP affecting the upper limb, and further evidence is currently being sought with a multi-sited, international, double blind, randomized, controlled clinical trial in upper and lower limb amputees. All experiments have been conducted in a clinical setting supervised by a therapist. Here, we present a series of case studies (two upper and two lower limb amputees) on the use of PME as a self-treatment. We explore the benefits and the challenges encountered in translation from clinic to home use with a holistic, mixed-methods approach, employing both quantitative and qualitative methods from engineering, medical anthropology, and user interface design. Patients and Methods: All patients were provided with and trained to use a myoelectric pattern recognition and AR/VR device for PME. Patients took these devices home and used them independently over 12 months. Results: We found that patients were capable of conducting PME as a self-treatment and incorporated the device into their daily life routines. Use patterns and adherence to PME practice were not only driven by the presence of PLP but also influenced by patients’ perceived need and social context. The main barriers to therapy adherence were time and availability of single-use electrodes, both of which could be resolved, or attenuated, by informed design considerations. Conclusion: Our findings suggest that adherence to treatment, and thus related outcomes, could be further improved by considering disparate user types and their utilization patterns. Our study highlights the importance of understanding, from multiple disciplinary angles, the tight coupling and interplay between pain, perceived need, and use of medical devices in patient-initiated therapy

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area

    Effi cacy of a Russian-backbone live attenuated infl uenza vaccine among children in Senegal: a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Live attenuated infl uenza vaccines have been shown to signifi cantly reduce infl uenza in diverse populations of children, but no effi cacy studies have been done in resource-poor tropical settings. In Senegal, we assessed the effi cacy and safety of a live attenuated infl uenza vaccine based on Russian-derived master donor viruses and licensed as a single dose. Methods In this double-blind, placebo-controlled, parallel group, single-centre trial done near Niakhar, Senegal, generally healthy children aged 2–5 years were randomly allocated (2:1) to receive a single intranasal dose of masked trivalent live attenuated infl uenza vaccine or placebo. The allocation sequence was computer-generated by PATH with block sizes of three. The manufacturer provided vaccine and placebo in coded vials to preserve blinding. Participants were monitored through the predictable infl uenza season in Senegal for adverse events and signs and symptoms of infl uenza using weekly home visits and surveillance in clinics. The primary outcome was symptomatic laboratoryconfi rmed infl uenza caused by any strain and occurring from 15 days post-vaccination to the end of the study. The primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT01854632. Findings Between May 23, and July 1, 2013, 1761 children were randomly assigned, 1174 to receive live attenuated infl uenza vaccine and 587 to receive placebo. The per-protocol set included 1173 vaccinees and 584 placebo recipients followed up to Dec 20, 2013. Symptomatic infl uenza was laboratory-confi rmed in 210 (18%) of 1173 recipients of live attenuated infl uenza vaccine and 105 (18%) of placebo recipients, giving a vaccine effi cacy of 0·0% (95% CI –26·4 to 20·9). Adverse events were balanced between the study groups. Two girls who had received live attenuated infl uenza vaccine died, one due to anasarca 12 days postvaccination and one due to malnutrition 70 days postvaccination. Interpretation Live attenuated infl uenza vaccine was well tolerated in young children in Senegal, but did not provide protection against infl uenza. Further study in such populations, which might experience extended periods of infl uenza circulation, is warranted

    Effects of Clove Oil (Eugenol) on Proprioceptive Neurons, Heart Rate, and Behavior in Model Crustaceans

    Get PDF
    Clove oil contains eugenol as an active ingredient and is used as a topical anesthetic in mammals to remedy pain and to anesthetize fish and other seafood for short periods; however, the exact mechanism of action of eugenol is not fully understood. We examined use of eugenol as a reversible anesthetic in crustaceans by examining its effect on sensory and motor neurons in the Red Swamp crayfish (Procambarus clarkii), Blue crab (Callinectes sapidus) and Whiteleg shrimp (Litopenaeus vannamei) with electrophysiological recordings. The neurogenic heart rate in the three species was also monitored along with behaviors and responsiveness to sensory stimuli. The activity of the primary proprioceptive neurons was reduced at 200 ppm and ceased at 400 ppm for both crayfish (i.e., muscle receptor organ) and crab (i.e., leg PD organ) preparations when exposed to saline containing eugenol. Flushing out eugenol resulted in recovery in the majority of the preparations within five to ten minutes. Administering eugenol to crayfish and crabs both systemically and through environmental exposure resulted in the animals becoming lethargic. Direct injection into the hemolymph was quicker to decrease reflexes and sensory perception, but heart rate was still maintained. Eugenol at a circulating level of 400 ppm decreased electromyogram activity in the claw muscle of crabs. Surprisingly, this study found no change in heart rate despite administering eugenol into the hemolymph to reach 400 ppm in crabs or crayfish but heart rate in shrimp preparations decreased. Our results demonstrate the feasibility of eugenol as a short-term anesthetic for crustaceans to decrease stress during handling or transportation, considering its effectiveness at decreasing sensory input and the quick recovery of upon removal of eugenol. A neurophysiology course took this project on as an authentic course-based undergraduate research experience (ACURE)
    corecore