5 research outputs found

    Generation of a homozygous CRYAB p.Arg120Gly mutant (UKEi001-A-1) from a human iPSC line

    No full text
    Variants in CRYAB can lead to desmin-related (cardio-)myopathy (DRM), a genetic muscle disorder with no curative treatment available. We introduced a homozygous CRYAB c.358G > A (p.Arg120Gly) mutation, which is established for the study of DRM in mice, into a donor human induced pluripotent stem cell (hiPSC) line. Control and mutant hiPSCs were tested for karyotype integrity and pluripotency marker expression. HiPSCs could be differentiated into endoderm, ectoderm and cardiomyocytes as a mesodermal derivative in vitro. CRYABhom hiPSC-derived cardiomyocytes developed intracellular CRYAB aggregates, which is a hallmark of DRM. This newly created mutant can be utilized to study DRM and cardiac proteinopathy in a human context

    Temporal and Spatial Dynamics of Cerebral Immune Cell Accumulation in Stroke

    No full text
    Background and Purpose-Ischemic stroke leads to significant morbidity and mortality in the Western world. Early reperfusion strategies remain the treatment of choice but can initiate and augment an inflammatory response causing secondary brain damage. The understanding of postischemic inflammation is very limited. The objectives of this study were to define the temporal and spatial infiltration of immune cell populations and their activation patterns in a murine cerebral ischemia-reperfusion injury model. Methods-Transient middle cerebral artery occlusion was induced for 1 hour followed by 12-hour to 7-day reperfusion in C57/BL6 mice. Immunohistochemistry and flow cytometry were used to quantify the infiltrating immune cell subsets. Results-Accumulation of microglia and infiltration of the ischemic hemisphere by macrophages, lymphocytes, and dendritic cells (DCs) preceded the neutrophilic influx. DCs were found to increase 20-fold and constituted a substantial proportion of infiltrating cells. DCs exhibited a significant upregulation of major histocompatibility complex II and major histocompatibility complex II high-expressing DCs were found 100 times more abundant than in sham conditions. Upregulation of the costimulatory molecule CD80 was observed in DCs and microglial cells but did not further increase in major histocompatibility complex II high-expressing DCs. No lymphocyte activation was observed. Additionally, regulatory immune cells (natural killer T-cells, CD4(-)/CD8(-)T lymphocytes) cumulated in the ischemic hemisphere. Conclusion-This study provides a detailed analysis of the temporal dynamics of immune cell accumulation in a rodent stroke model. The peculiar activation pattern and massive increase of antigen-presenting cells in temporal conjunction with regulatory cells might provide additional insight into poststroke immune regulation. (Stroke. 2009; 40:1849-1857.

    ACTN2 Mutant Causes Proteopathy in Human iPSC-Derived Cardiomyocytes

    No full text
    Genetic variants in α-actinin-2 (ACTN2) are associated with several forms of (cardio)myopathy. We previously reported a heterozygous missense (c.740C>T) ACTN2 gene variant, associated with hypertrophic cardiomyopathy, and characterized by an electro-mechanical phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Here, we created with CRISPR/Cas9 genetic tools two heterozygous functional knock-out hiPSC lines with a second wild-type (ACTN2wt) and missense ACTN2 (ACTN2mut) allele, respectively. We evaluated their impact on cardiomyocyte structure and function, using a combination of different technologies, including immunofluorescence and live cell imaging, RNA-seq, and mass spectrometry. This study showed that ACTN2mut presents a higher percentage of multinucleation, protein aggregation, hypertrophy, myofibrillar disarray, and activation of both the ubiquitin-proteasome system and the autophagy-lysosomal pathway as compared to ACTN2wt in 2D-cultured hiPSC-CMs. Furthermore, the expression of ACTN2mut was associated with a marked reduction of sarcomere-associated protein levels in 2D-cultured hiPSC-CMs and force impairment in engineered heart tissues. In conclusion, our study highlights the activation of proteolytic systems in ACTN2mut hiPSC-CMs likely to cope with ACTN2 aggregation and therefore directs towards proteopathy as an additional cellular pathology caused by this ACTN2 variant, which may contribute to human ACTN2-associated cardiomyopathies

    Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke

    No full text
    The devastating effect of ischemic stroke is attenuated in mice lacking conventional and unconventional T cells suggesting that inflammation enhances tissue damage in cerebral ischemia. We explored the functional role of αβ and γδ T cells in a murine model of stroke and distinguished two different T cell-dependent proinflammatory pathways in ischemiareperfusion injury. IFN-γ produced by CD4+ T cells induced TNF-α production in macrophages, while IL-17A secreted by γδ T cells led to neutrophil recruitment. The synergistic effect of TNF-α and IL-17A on astrocytes resulted in enhanced secretion of CXCL-1, a neutrophil chemoattractant. Application of an IL-17A-blocking antibody within three hours after stroke induction decreased infarct size and improved neurological outcome in the murine model. In autoptic brain tissue of stroke patients, we detected IL-17A positive lymphocytes suggesting that this aspect of the inflammatory cascade is also relevant in the human brain. We propose that selective targeting of IL-17A signaling might provide a new therapeutic option for the treatment of stroke
    corecore