54 research outputs found

    Generation of an induced pluripotent stem cell line (UCSCi001-A) from a patient with early-onset amyotrophic lateral sclerosis carrying a FUS variant.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons. We generated patient-derived-induced Pluripotent Stem Cells (iPSCs), from an ALS patient affected by an early-onset and aggressive form of the disease, carrying a missense pathogenic variant in FUS gene. We reprogrammed somatic cells using an established Sendai virus protocol and we obtained clones of iPSC. We confirmed their stemness and further generated embryoid bodies, showing their potential of differentiating in all three germ layers. This iPSC line, carrying a pathogenic FUS variant, is a valuable tool to deeply investigate pathogenic mechanisms leading to ALS

    Generation of an induced pluripotent stem cell line (UCSCi002-A) from a patient with a variant in TARDBP gene associated with familial amyotrophic lateral sclerosis and frontotemporal dementia

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively affects motor neurons. In 20% of cases, ALS appears in comorbidity with frontotemporal dementia (FTD). We generated patient-derived-induced Pluripotent Stem Cells (iPSCs), from an ALS/FTD patient. The patient had a familial form of the disease and a missense variant in TARDBP gene. We used an established protocol based on Sendai virus to reprogram fibroblasts. We confirmed the stemness and the pluripotency of the iPSC clones, thus generating embryoid bodies. We believe that the iPSC line carrying a TARDBP mutation could be a valuable tool to investigate TDP-43 proteinopathy linked to ALS

    Chromosome 9p deletion syndrome and sex reversal: novel findings and redefinition of the critically deleted regions

    Get PDF
    Deletions of the short arm of chromosome 9 are associated with two distinct clinical entities. Small telomeric 9p24.3 deletions cause genital anomalies in male subjects, ranging from disorder of gonadal sex to genital differentiation anomalies, while large terminal or interstitial deletions result in 9p-malformation syndrome phenotype. The critical region for non-syndromic 46,XY sex reversal was assigned to a 1 Mb interval of chromosome 9p, extending from the telomere to the DMRT genes cluster. The 9p-syndrome was assigned to bands 9p22.3p24.1, but a phenotypic map has not been established for this condition, probably because of the lack of detailed molecular and/or phenotypic characterization, as well as frequent involvement of additional chromosome rearrangements. Here, we describe a unique patient with a small isolated 9p terminal deletion, characterized by array-CGH and FISH, who shows a complex phenotype with multiple physical anomalies, resembling the 9p-syndrome, disorder of sex development with gonadoblastoma, congenital heart defect and epilepsy. The observed deletion includes the 46,XY sex-reversal critical region, excluding the region so far associated with the 9p-syndrome. Genotype-phenotype correlations are tentatively established comparing our patient to seven other previously reported males with isolated terminal 9p deletions, finely defined at a molecular level. Our observations expand the 9p deletion clinical spectrum, and add significantly to the definition of a 9p-syndrome critical region

    The chromosome analysis of the miscarriage tissue. Miscarried embryo/fetal crown rump length (CRL) measurement: A practical use

    Get PDF
    Objective To investigate whether miscarried embryo/fetal crown rump length (CRL) measurement may yield a practical application for predicting a conclusive result at the cytogenetic analysis of miscarriage tissue. Our study might help in improving the cytogenetic method, the results of which may be affected by maternal cell contamination (MCC). In particular, we aimed at establishing whether the miscarried embryo/fetal CRL measurement shows accuracy in predicting the possibility of MCC and the scan cut-off value useful to this purpose and, as a result, suggest a multi-step procedure for the genetic ascertainment. Methods Women experiencing at least two miscarriages of less than 20 weeks size at the Pregnancy Loss Unit at Fondazione Policlinico A. Gemelli underwent a scan before surgery. The CRL value was recorded. After the dilatation and courettage (D&C) procedure, miscarriage tissue was processed through the proposed multi-step procedure before performing oligo-nucleotide- based and SNP (single nucleotide polymorphisms)-based comparative genomic hybridization (CGH+SNP) microarray analysis. Results 63 women and 63 miscarriages met the criteria. By using the Receiving Operator Characteristic (ROC) curves, CRL showed an AUC of 0.816 (95%CI:0.703\ub10.928,p<0.001). A CRL24.5 mm cut-off value showed a higher positive likelihood ratio (5.27) but, conversely, a higher negative likelihood ratio (0.64) in predicting the possibility of MCC. Microarray analysis was successful in the totality of cases in which the embryo/fetal origin of miscarriage tissues was proven

    Duplication of the Rubinstein-Taybi region on 16p13.3 is associated with a distinctive phenotype

    No full text
    We report on a 16-year-old girl with a multiple congential anomalies/mental retardation condition, in which a 1.7 Mb tandem duplication of chromosome region 16p13.3 was detected by array-CGH. Mental retardation was moderate (IQ 45), with very limited speech. She had tall stature with relative microcephaly. Clinical manifestations included distinctive facial apperance with deep set eyes, narrow palpebral fissures, wide nasal bridge, long philtrum, rounded nasal tip, thin upper lip, protruding mandible and abnormal auricles, hand and foot anomalies. The causal 16p13.3 duplication is one of the smallest reported so far, and included the CBP gene, whose haploinsufficiency is responsible for the Rubinstein-Taybi syndrome. By comparing clinical manifestations of our patient with those of patients carrying similar rearrangements, we coud infer that 16p13.3 microduplications encompassing the Rubinstein-Taybi region resulted in a recognizable clinical condition, most likely representing a single disorder. (C) Wiley-Liss, Inc

    Expanding the spectrum of rearrangements involving chromosome 19: a mild phenotype associated with a 19p13.12-p13.13 deletion.

    No full text
    We report on a patient with a 1.2\u2009Mb 19p13.12-p13.13 deletion. Compared to previously reported individuals with partially overlapping deletions, the propositus presented with a less severe phenotype, consisting of mild intellectual disability and behavior anomalies, with episodes of simple febrile seizures and without significant physical anomalies or major malformations. The deleted region includes 29 coding genes, some of which have already been demonstrated to be involved in cognitive processes. Mutations in two of them, CC2D1A and TECR, were recently reported to be responsible for non-syndromal, autosomal recessive intellectual disability. The residual alleles of all of these genes were submitted to sequence analysis. No sequence variants were found that could be considered pathogenic. This patient constitutes a further example of the wide phenotypic variability associated with chromosomal rearrangements, likely due to the different size of deleted/duplicated segments

    Investigating the “Fetal Side” in Recurrent Pregnancy Loss: Reliability of Cell-Free DNA Testing in Detecting Chromosomal Abnormalities of Miscarriage Tissue

    No full text
    (1) Background: The aim of our study is to evaluate whether cell-free DNA testing can overlap the genetic testing of miscarriage tissue in women with early pregnancy loss (EPL) and length of recurrent pregnancy loss (RPL); (2) Methods: We conducted a prospective cohort study at the Pregnancy Loss Unit of the Fondazione Policlinico Universitario A. Gemelli (IRCCS), Rome, Italy between May 2021 and March 2022. We included women with EPL and length of RPL. Gestational age was >9 weeks + 2 days and 25 and <54 mm. Women underwent both dilation and curettage for the collection of miscarriage tissue and for blood sample collection. Chromosomal microarray analysis (CMA) on miscarriage tissues was performed by oligo-nucleotide- and single nucleotide polymorphisms (SNP)-based comparative genomic hybridization (CGH+SNP). Maternal blood samples were analyzed by Illumina VeriSeq non-invasive prenatal testing (NIPT) to evaluate the cell-free fetal DNA (cfDNA) and the corresponding fetal fraction and the presence of genetic abnormalities; (3) Results: CMA on miscarriage tissues revealed chromosome aneuploidies in 6/10 cases (60%), consisting of trisomy 21 (5 cases) and monosomy X (one case). cfDNA analysis was able to identify all cases of trisomy 21. It failed to detect monosomy X. A large 7p14.1p12.2 deletion concomitant to trisomy 21 was, in one case, detected by cfDNA analysis but it was not confirmed by CMA on miscarriage tissue. (4) Conclusions: cfDNA largely reproduces the chromosomal abnormalities underlying spontaneous miscarriages. However, diagnostic sensitivity of cfDNA analysis is lower with respect to the CMA of miscarriage tissues. In considering the limitations when obtaining biological samples from aborted fetuses suitable for CMA or standard chromosome analysis, cfDNA analysis is a useful, although not exhaustive, tool for the chromosome diagnosis of both early and recurrent pregnancy loss

    CHAMP1-related disorders: pathomechanisms triggered by different genomic alterations define distinct nosological categories

    No full text
    : Loss-of-function variants in CHAMP1 were recently described as cause of a neurodevelopmental disorder characterized by intellectual disability (ID), autism, and distinctive facial characteristics. By exome sequencing (ES), we identified a truncating variant in CHAMP1, c.1858A &gt; T (p.Lys620*), in a patient who exhibited a similar phenotype of severe ID and dysmorphisms. Whether haploinsufficiency or a dominant negative effect is the underlying pathomechanism in these cases is a question that still needs to be addressed. By array-CGH, we detected a 194 kb deletion in 13q34 encompassing CHAMP1, CDC16 and UPF3, in another patient who presented with borderline neurodevelopmental impairment and with no dysmorphisms. In a further patient suffering from early onset refractory seizures, we detected by ES a missense variant in CHAMP1, c.67 G &gt; A (p.Gly23Ser). Genomic abnormalities were all de novo in our patients. We reviewed the clinical and the genetic data of patients reported in the literature with: loss-of-function variants in CHAMP1 (total 40); chromosome 13q34 deletions ranging from 1.1 to 4 Mb (total 7) and of the unique patient with a missense variant. We could infer that loss-of-function variants in CHAMP1 cause a homogeneous phenotype with severe ID, autism spectrum disorders (ASD) and highly distinctive facial characteristics through a dominant negative effect. CHAMP1 haploinsufficiency results in borderline ID with negligible consequences on the quality of life. Missense variants give rise to a severe epileptic encephalopathy through gain-of-function mechanism, most likely. We tentatively define for the first time distinct categories among the CHAMP1-related disorder on the basis of pathomechanisms

    Variable expressivity of a familial 1.9 Mb microdeletion in 3q28 leading to haploinsufficiency of TP63: Refinement of the critical region for a new microdeletion phenotype.

    No full text
    We report on a 3-year-old male with intellectual disability (ID), characteristic facial features, polydactyly and epilepsy carrying a paternally inherited 3q28 deletion of 1.9 Mb. The father, carrying the same deletion, presents with cleft palate, nail dystrophy and learning difficulties. The deleted region in this family is one of the smallest so far reported among genomic deletions affecting 3q27-3q28 for which some phenotypic descriptions are available. In particular, since the phenotype of our proband is strikingly similar to that previously described in a patient with a 9.3 Mb deletion, the deletion identified in this report contributes to the definition of the molecular boundaries of a genomic region responsible for a distinct clinical phenotype. Within the deleted interval there are 9 annotated genes, including TP63. Gain of function mutations of TP63 are known to be responsible for a group of conditions with distal limb and ectodermal involvement, such as ADULT, EEC, LMS, and SHFM4 syndromes. Interestingly, our cases demonstrate a milder phenotypic effect for loss of function of this gene

    Pathogenic variants in SOX11 mimicking Pitt-Hopkins syndrome phenotype

    No full text
    : Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder characterised by severe intellectual disability (ID), distinctive facial features and autonomic nervous system dysfunction, caused by TCF4 haploinsufficiency. We clinically diagnosed with PTHS a 14 6/12 -year-old female, who had a normal status of TCF4. The pathogenic c.667del (p.Asp223MetfsTer45) variant in SOX11 was identified through whole exome sequencing (WES). SOX11 variants were initially reported to cause Coffin-Siris syndrome (CSS), characterised by growth restriction, moderate ID, coarse face, hypertrichosis and hypoplastic nails. However, recent studies have provided evidence that they give rise to a distinct neurodevelopmental disorder. To date, SOX11 variants are associated with a variable phenotype, which has been described to resemble CSS in some cases, but never PTHS. By reviewing both clinically and genetically 32 out of 82 subjects reported in the literature with SOX11 variants, for whom detailed information are provided, we found that 7/32 (22%) had a clinical presentation overlapping PTHS. Furthermore, we made a confirmation that overall SOX11 abnormalities feature a distinctive disorder characterised by severe ID, high incidence of microcephaly and low frequency of congenital malformations. Purpose of the present report is to enhance the role of clinical genetics in assessing the individual diagnosis after WES results
    • …
    corecore