194 research outputs found

    Experimental infection with a low virulence isolate of Neospora caninum at 70 days gestation in cattle did not result in foetopathy

    Get PDF
    The Nc-Spain 1H isolate of Neospora caninum, which was newly obtained from the brain of a congenitally asymptomatic infected calf, demonstrated a reduced in vitro tachyzoite yield and viability rate, as well as low virulence in mouse models. The objective of the present study was to determine the ability of this isolate to induce foetal death in a pregnant bovine model. For this purpose, 13 naïve pregnant heifers were divided into three groups and were experimentally challenged with either 107 tachyzoites of Nc-1 (group 1, n = 5), Nc-Spain 1H (group 2, n = 5) isolates or phosphate-buffered saline (group 3, n = 3) intravenously at 70 days of gestation. After inoculation, pregnancy was monitored and dams were sacrificed when foetal death was detected. The remaining animals were slaughtered at 45 days post-infection. Maternal and foetal samples were collected for examination by histology and parasite DNA detection. Parasitaemia, specific anti-N. caninum IgG and interferon γ responses were also studied. At 3–4 weeks after infection, foetal death was detected in 3 out of 5 Nc-1-infected dams. However, no evidence of foetal death was observed in either Nc-Spain 1H-infected or control groups during the period studied. The most severe histopathological lesions were observed in the placenta and foetal organs from Nc-1-infected cattle that exhibited foetal death. It was in these animals that N. caninum DNA was more frequently detected. Parasitaemia was observed in all Nc-1-infected dams and in only 3 out of 5 Nc-Spain 1H-infected animals. The magnitude of the immune response was significantly higher in the Nc-1-inoculated group than in the group inoculated with the Nc-Spain 1H isolate. These data reveal the reduced virulence of the Nc-Spain 1H isolate in cattle

    Highly tunable optically switched time delay line for transversal filtering

    Get PDF
    A novel tunable dispersion device, based on two chirped fibre gratings subjected to non-uniform magnetic fields, is presented. A large degree of tunability is achieved from 250 to 750 ps/nm. This is used to demonstrate RF filtering in the 3-11 GHz range

    Bovine infectious abortion: a systematic review and meta-analysis

    Get PDF
    The aim of the present systematic review and meta-analysis was to identify the main infectious agents related to bovine abortion worldwide in the period between 2000 and 2022. First, we investigated the global prevalence of infectious agents related to bovine abortion. For this analysis, only 27 articles detected of a wide panel of agents were included. The random effects model revealed that the estimated prevalence of the abortifacient agents in bovine abortion was 45.7%. The heterogeneity among studies was high, but Egger’s test showed that there was no publication bias, even though the total number of samples analyzed in these articles was variable. There was no significant effect of the year of the study publication on the estimated prevalence, although an increasing trend was observed over time, possibly due to the implementation of new diagnostic techniques. Then, we analyzed the prevalence of the main transmissible agents in bovine abortion. For this analysis, 76 studies that analyzed 19,070 cases were included. Some infectious agent was detected in 7,319 specimens, and a final diagnosis was reached in 3,977 of these, when both the infectious agent and compatible histopathological changes were detected. We found that Neospora caninum was the most detected agent (22.2%), followed by opportunistic bacteria (21.4%), Chlamydiaceae family (10.9%) and Coxiella burnetii (9.5%). Regarding viral agents, bovine herpes virus type 1 and bovine viral diarrhea displayed similar prevalence rates (approximately 5%). After considering the description of specific histopathological changes, our analyzes showed that N. caninum was a confirmed cause of abortion in 16.7% of the analyzed cases, followed by opportunistic bacteria (12.6%) and Chlamydia spp. (6.8%); however, C. burnetii was only confirmed as a cause of abortion in 1.1% of the cases. For all agents, the heterogeneity among studies was high, and the subgroup analyzes discarded the diagnostic method as the cause of such heterogeneity. This study provides knowledge about the global prevalence of the different infectious agents related to bovine abortion, the most coming of which is N. caninum. In addition, this review reveals the existing deficiencies in the diagnosis of bovine abortion that must be addressed in the future

    In vitro invasion efficiency and intracellular proliferation rate comprise virulence-related phenotypic traits of Neospora caninum

    Get PDF
    In this study, we examined the in vitro invasion and proliferation capacities of the Nc-Liv and ten Spanish Neospora caninum isolates (Nc-Spain 1 H - Nc-Spain 10). The invasion rate was determined as the number of tachyzoites that completed their internalisation into MARC-145 cells at 2, 4, and 6 h post-inoculation (pi). The proliferation rate was evaluated by determining the doubling time during the exponential proliferation period. Significant differences in the invasion rates of these isolates were detected at 2 and 4 h pi (P < 0.0001, Kruskal-Wallis test). At 4 h pi, the Nc-Spain 4 H and Nc-Liv isolates displayed the highest, while the Nc-Spain 3 H and Nc-Spain 1 H isolates had the lowest invasion rates (by Dunn's test). Variations in the proliferation kinetics of these isolates were also observed. Between different isolates, the lag phase, which occurs before the exponential growth phase, ranged from 8 to 44 h, and the doubling time ranged from 9.8 to 14.1 h (P = 0.0016, ANOVA test). Tachyzoite yield, which combines invasion and proliferation data, was also assessed and confirmed marked differences between the highly and less prolific isolates. Interestingly, a direct correlation between the invasion rates and tachyzoite yields, and the severity of the disease that was exhibited by infected pregnant mice in previous works could be established for the isolates in this study (Spearman's coefficient > 0.62, P < 0.05). The results of this study may help us to explain the differences in the pathogenicity that are displayed by different isolates

    In Vitro versus in Mice: Efficacy and Safety of Decoquinate and Quinoline-O-Carbamate Derivatives against Experimental Infection with Neospora caninum Tachyzoites.

    Get PDF
    The effects of decoquinate (DCQ) and three O-quinoline-carbamate-derivatives were investigated using human foreskin fibroblasts (HFF) infected with Neospora caninum tachyzoites. These compounds exhibited half-maximal proliferation inhibition (IC50s) from 1.7 (RMB060) to 60 nM (RMB055). Conversely, when applied at 5 (DCQ, RMB054) or 10µM (RMB055, RMB060), HFF viability was not affected. Treatments of infected cell cultures at 0.5µM altered the ultrastructure of the parasite mitochondrion and cytoplasm within 24 h, most pronounced for RMB060, and DCQ, RMB054 and RMB060 did not impair the viability of splenocytes from naïve mice. Long-term treatments of N. caninum-infected HFF monolayers with 0.5µM of each compound showed that only exposure to RMB060 over a period of six consecutive days had a parasiticidal effect, while the other compounds were not able to kill all tachyzoites in vitro. Thus, DCQ and RMB060 were comparatively assessed in the pregnant neosporosis mouse model. The oral application of these compounds suspended in corn oil at 10 mg/kg/day for 5 d resulted in a decreased fertility rate and litter size in the DCQ group, whereas reproductive parameters were not altered by RMB060 treatment. However, both compounds failed to protect mice from cerebral infection and did not prevent vertical transmission/pup mortality. Thus, despite the promising in vitro efficacy and safety characteristics of DCQ and DCQ-derivatives, proof of concept for activity against neosporosis could not be demonstrated in the murine model

    Effects of challenge dose and inoculation route of the virulent Neospora caninum Nc-Spain7 isolate in pregnant cattle at mid-gestation

    Get PDF
    International audienceAbstractParameters such as pathogen dose and inoculation route are paramount in animal models when studying disease pathogenesis. Here, clinical findings, including foetal mortality, parasite transmission rates and lesion severity, and immune responses were evaluated in Asturiana pregnant heifers at day 110 of gestation challenged with a virulent (Nc-Spain7) Neospora caninum isolate. Four different doses of parasite tachyzoites were inoculated intravenously (IV1, 107 parasites, n = 6; IV2, 105, n = 6; IV3, 103, n = 6; and IV4, 102, n = 5), and the subcutaneous (SC) inoculation route was also assessed for the dose of 105 tachyzoites (SC, n = 6). In addition, a control group (n = 4 pregnant heifers) was evaluated. Foetal death was observed in all infected groups from 25 to 62 days post-infection, varying with the dose (IV1:4/6, IV2:3/6; IV4:2/5, IV3:1/6), and was three times less frequently associated with the SC route than IV inoculation (1/6 vs. 3/6). A dose-dependent effect for parasite loads in placental and foetal brain tissues was also detected. After SC challenge, a reduced number of tachyzoites were able to reach foetal brain tissues, and no lesions were observed. In calves, specific IgG responses in precolostral sera were mainly associated with high-dose groups (IV1 [100.0%] and IV2 [66.7%]), and cerebral parasite DNA detection was scarce (3/18). In dams, IFN-γ production and the dynamics of anti-N. caninum IgG antibodies varied with the dose, and the cell-mediated immune response was also found to be route-dependent. Our results confirm the influence of parasite dose and inoculation route on the outcome and dynamics of bovine neosporosis at mid-gestation

    Vaccine-Linked Chemotherapy Approach: Additive Effects of Combining the Listeria monocytogenes-Based Vaccine Lm3Dx_NcSAG1 With the Bumped Kinase Inhibitor BKI-1748 Against Neospora caninum Infection in Mice.

    Get PDF
    The apicomplexan parasite Neospora (N.) caninum causes neosporosis in numerous host species. There is no marketed vaccine and no licensed drug for the prevention and/or treatment of neosporosis. Vaccine development against this parasite has encountered significant obstacles, probably due to pregnancy-induced immunomodulation hampering efficacy, which has stimulated the search for potential drug therapies that could be applied to limit the effects of neosporosis in dams as well as in offspring. We here investigated, in a pregnant neosporosis mouse model, the safety and efficacy of a combined vaccination-drug treatment approach. Mice were vaccinated intramuscularly with 1 × 107 CFU of our recently generated Listeria (L.) monocytogenes vaccine vector expressing the major N. caninum tachyzoite surface antigen NcSAG1 (Lm3Dx_SAG1). Following mating and experimental subcutaneous infection with 1 × 105 N. caninum (NcSpain-7) tachyzoites on day 7 of pregnancy, drug treatments were initiated using the bumped kinase inhibitor BKI-1748 at 20 mg/kg/day for 5 days. In parallel, other experimental groups were either just vaccinated or only treated. Dams and offspring were followed-up until day 25 post-partum, after which all mice were euthanized. None of the treatments induced adverse effects and neither of the treatments affected fertility or litter sizes. Cerebral infection in dams as assessed by real-time PCR was significantly reduced in the vaccinated and BKI-1748 treated groups, but was not reduced significantly in the group receiving the combination. However, in non-pregnant mice, all three treatment groups exhibited significantly reduced parasite burdens. Both, vaccination as well BKI-1748 as single treatment increased pup survival to 44 and 48%, respectively, while the combination treatment led to survival of 86% of all pups. Vertical transmission in the combination group was 23% compared to 46 and 50% in the groups receiving only BKI-treatment or the vaccine, respectively. In the dams, IgG titers were significantly reduced in all treatment groups compared to the untreated control, while in non-pregnant mice, IgG titers were reduced only in the group receiving the vaccine. Overall, vaccine-linked chemotherapy was more efficacious than vaccination or drug treatment alone and should be considered for further evaluation in a more relevant experimental model

    Differential Affinity Chromatography Coupled to Mass Spectrometry: A Suitable Tool to Identify Common Binding Proteins of a Broad-Range Antimicrobial Peptide Derived from Leucinostatin.

    Get PDF
    Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans
    corecore