9,395 research outputs found

    On the Perturbations of Viscous Rotating Newtonian Fluids

    Get PDF
    The perturbations of weakly-viscous, barotropic, non-self-gravitating, Newtonian rotating fluids are analyzed via a single partial differential equation. The results are then used to find an expression for the viscosity-induced normal-mode complex eigenfrequency shift, with respect to the case of adiabatic perturbations. However, the effects of viscosity are assumed to have been incorporated in the unperturbed (equilibrium) model. This paper is an extension of the normal-mode formalism developed by Ipser & Lindblom for adiabatic pulsations of purely-rotating perfect fluids. The formulas derived are readily applicable to the perturbations of thin and thick accretion disks. We provide explicit expressions for thin disks, employing results from previous relativistic analyses of adiabatic normal modes of oscillation. In this case, we find that viscosity causes the fundamental p- and g- modes to grow while the fundamental c-mode could have either sign of the damping rate.Comment: Accepted for publication by The Astrophysical Journal. 11 pages, no figure

    BCS pairing in fully repulsive fermion mixtures

    Full text link
    We consider a mixture of two neutral cold Fermi gases with repulsive interactions. We show that in some region of the parameter space of the system the effective attraction between fermions of the same type can appear due to the exchange of collective excitations. This leads to the formation of BCS pairing in the case where bare inter-atomic interactions are repulsive

    Synoptic patterns associated with wildfires caused by lightning in Castile and Leon, Spain

    Get PDF
    The Iberian Peninsula presents the highest number of wildfires in Europe. In the NW of Spain in particular, wildfires are the natural risk with the greatest economic impact in this region. Wildfires caused by lightning are closely related to the triggering of convective phenomena. The prediction of thunderstorms is a very complex task because these weather events have a local character and are highly dependent on mesoscale atmospheric conditions. The development of convective storms is directly linked to the existence of a synoptic environment favoring convection. The aim of this study is to classify the atmospheric patterns that provide favorable environments for the occurrence of wildfires caused by lightning in the region of Castile and Leon, Spain. The database used for the study contains 376 wildfire days from the period 1987–2006. NCEP data reanalysis has been used. The atmospheric fields used to characterise each day were: geopotential heights and temperatures at 500 hPa and 850 hPa, relative humidity and the horizontal wind at 850 hPa. A Principal Component Analysis in T-mode followed by a Cluster Analysis resulted in a classification of wildfire days into five clusters. The characteristics of these clusters were analysed and described, focusing particularly on the study of those wildfire days in which more than one wildfire was detected. In these cases the main feature observed was the intensification of the disturbance typical of the cluster to which the wildfire belongs

    Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb

    Get PDF
    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity.Comment: 4 pages, 4 Figure

    Using Topological Statistics to Detect Determinism in Time Series

    Full text link
    Statistical differentiability of the measure along the reconstructed trajectory is a good candidate to quantify determinism in time series. The procedure is based upon a formula that explicitly shows the sensitivity of the measure to stochasticity. Numerical results for partially surrogated time series and series derived from several stochastic models, illustrate the usefulness of the method proposed here. The method is shown to work also for high--dimensional systems and experimental time seriesComment: 23 RevTeX pages, 14 eps figures. To appear in Physical Review

    Stiff Mutant Genes of Phycomyces Affect Turgor Pressure and Wall Mechanical Properties to Regulate Elongation Growth Rate

    Get PDF
    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). “Stiff” mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the “growth zone.” Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (−) and C216 geo- (−). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall

    Low temperature transition to a superconducting phase in boron-doped silicon films grown on (001)-oriented silicon wafers

    Full text link
    We report on a detailed analysis of the superconducting properties of boron-doped silicon films grown along the 001 direction by Gas Immersion Laser Doping. The doping concentration cB has been varied up to approx. 10 at.% by increasing the number of laser shots to 500. No superconductivity could be observed down to 40mK for doping level below 2.5 at.%. The critical temperature Tc then increased steeply to reach 0.6K for cB = 8 at%. No hysteresis was found for the transitions in magnetic field, which is characteristic of a type II superconductor. The corresponding upper critical field Hc2(0) was on the order of 1000 G, much smaller than the value previously reported by Bustarret et al. in Nature (London) 444, 465 (2006).Comment: 4 pages including 4 figures, submitted to PRB-Rapid Communicatio

    Electrodynamic Radiation Reaction and General Relativity

    Full text link
    We argue that the well-known problem of the instabilities associated with the self-forces (radiation reaction forces) in classical electrodynamics are possibly stabilized by the introduction of gravitational forces via general relativity

    MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    Full text link
    We present MUSE integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z=0.0206z=0.0206, D≃90D\simeq 90 Mpc) and best-studied tidal disruption events (TDE), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to ≳10\gtrsim 10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O III] λ\lambda5007, [N II] λ\lambda6584, and Hα\alpha emission lines. The total off nuclear [O III] λ\lambda5007 luminosity is luminosity is 4.7×10394.7\times 10^{39} erg s−1^{-1} and the ionized H mass is ∌104(500/ne) M⊙\rm \sim 10^4(500/n_e)\,M_{\odot}. Based on the BPT diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization "cones" around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black-hole binaries.Comment: Accepted for publication in ApJ
    • 

    corecore