15 research outputs found

    A mesoporous Zr-based metal–organic framework driven by the assembly of an octatopic linker

    Get PDF
    Metal–organic frameworks (MOFs) based on high-connected nets are generally very attractive due to their combined robustness and porosity. Here, we describe the synthesis of BCN-348, a new high-connected Zr-MOF built from an 8-connected (8-c) cubic Zroxocluster and an 8-c organic linker. BCN-348 contains a minimal edge-transitive 3,4,8-c eps net, and combines mesoporosity with thermal and hydrolytic stability. Encouraging results from preliminary studies on its use as a catalyst for hydrolysis of a nerve-agent simulant suggest its potential as an agent for detoxification of chemical weapons and other pernicious compounds.European Union’s Horizon 2020 research and innovation programme, under grant agreement No 101019003Catalan AGAUR (project 2021 SGR 00458)the CERCA Programme/Generalitat de Catalunya, and the Spanish MCIN/AEI/10.13039/501100011033 (Project PID2020-113608RB-I00ICN2 is supported by the Severo Ochoa Centres of Excellence programmeGrant CEX2021- 001214-S, funded by MCIN/AEI/10.13039.50110001103

    Net-clipping : an approach to deduce the topology of metal-organic frameworks built with zigzag ligands

    Get PDF
    Altres ajuts: it was also funded by the CERCA Program/Generalitat de Catalunya.Herein we propose a new approach for deducing the topology of metal-organic frameworks (MOFs) assembled from organic ligands of low symmetry, which we call net-clipping. It is based on the construction of nets by rational deconstruction of edge-transitive nets comprising higher-connected molecular building blocks (MBBs). We have applied net-clipping to predict the topologies of MOFs containing zigzag ligands. To this end, we derived 2-connected (2-c) zigzag ligands from 4-c square-like MBBs by first splitting the 4-c nodes into two 3-c nodes and then clipping their two diagonally connecting groups. We demonstrate that, when this approach is applied to the 17 edge-transitive nets containing square-like 4-c MBBs, net-clipping leads to generation of 10 nets with different underlying topologies. Moreover, we report that literature and experimental research corroborate successful implementation of our approach. As proof-of-concept, we employed net-clipping to form three new MOFs built with zigzag ligands, each of which exhibits the deduced topology

    Photoredox heterobimetallic dual catalysis using engineered covalent organic frameworks

    Get PDF
    The functionalization of an imine-based layered covalent organic framework (COF), containing phenanthroline units as ligands, has allowed the obtention of a heterobimetallated material. Photoactive Ir and Ni fragments were immobilized within the porous structure of the COF, enabling heterogeneous light-mediated Csp 3 -Csp 2 cross-couplings. As radical precursors, potassium benzyl- and alkoxy-trifluoroborates, organic silicates, and proline derivatives were employed, which brings out the good versatility of Ir,Ni@Phen-COF. Moreover, in all the studied cases, an enhanced activity and stability have been observed in comparison with analogous homogenous systems

    Isoreticular Contraction of Metal-Organic Frameworks Induced by Cleavage of Covalent Bonds

    Get PDF
    Isoreticular chemistry, in which the organic or inorganic moieties of reticular materials can be replaced without destroying their underlying nets, is a key concept for synthesizing new porous molecular materials and for tuning or functionalization of their pores. Here, we report that the rational cleavage of covalent bonds in a metal-organic framework (MOF) can trigger their isoreticular contraction, without the need for any additional organic linkers. We began by synthesizing two novel MOFs based on the MIL-142 family, (In)BCN-20B and (Sc)BCN-20C, which include cleavable as well as noncleavable organic linkers. Next, we selectively and quantitatively broke their cleavable linkers, demonstrating that various dynamic chemical and structural processes occur within these structures to drive the formation of isoreticular contracted MOFs. Thus, the contraction involves breaking of a covalent bond, subsequent breaking of a coordination bond, and finally, formation of a new coordination bond supported by structural behavior. Remarkably, given that the single-crystal character of the parent MOF is retained throughout the entire transformation, we were able to monitor the contraction by single-crystal X-ray diffraction

    Clip-off Chemistry : Synthesis by Programmed Disassembly of Reticular Materials

    Get PDF
    Bond breaking is an essential process in chemical transformations and the ability of researchers to strategically dictate which bonds in a given system will be broken translates to greater synthetic control. Here, we report extending the concept of selective bond breaking to reticular materials in a new synthetic approach that we call Clip-off Chemistry. We show that bond-breaking in these structures can be controlled at the molecular level; is periodic, quantitative, and selective; is effective in reactions performed in either solid or liquid phases; and can occur in a single-crystal-to-single-crystal fashion involving the entire bulk precursor sample. We validate Clip-off Chemistry by synthesizing two topologically distinct 3D metal-organic frameworks (MOFs) from two reported 3D MOFs, and a metal-organic macrocycle from metal-organic polyhedra (MOP). Clip-off Chemistry opens the door to the programmed disassembly of reticular materials and thus to the design and synthesis of new molecules and materials. Clip-off Chemistry, a new approach to synthesizing molecules and materials based on the programmed de-reticulation and controlled etching at the molecular level in reticular materials, is introduced. Using this strategy, we have transformed two 3D metal-organic frameworks (MOFs) into two topologically distinct 3D MOFs, and one metal-organic polyhedra into a metal-organic macrocycle

    Clip-off Chemistry : Synthesis by Programmed Disassembly of Reticular Materials

    Get PDF
    Bond breaking is an essential process in chemical transformations and the ability of researchers to strategically dictate which bonds in a given system will be broken translates to greater synthetic control. Here, we report extending the concept of selective bond breaking to reticular materials in a new synthetic approach that we call Clip-off Chemistry. We show that bond-breaking in these structures can be controlled at the molecular level; is periodic, quantitative, and selective; is effective in reactions performed in either solid or liquid phases; and can occur in a single-crystal-to-single-crystal fashion involving the entire bulk precursor sample. We validate Clip-off Chemistry by synthesizing two topologically distinct 3D metal-organic frameworks (MOFs) from two reported 3D MOFs, and a metal-organic macrocycle from metal-organic polyhedra (MOP). Clip-off Chemistry opens the door to the programmed disassembly of reticular materials and thus to the design and synthesis of new molecules and materials. Clip-off Chemistry, a new approach to synthesizing molecules and materials based on the programmed de-reticulation and controlled etching at the molecular level in reticular materials, is introduced. Using this strategy, we have transformed two 3D metal-organic frameworks (MOFs) into two topologically distinct 3D MOFs, and one metal-organic polyhedra into a metal-organic macrocycle

    Multicomponent, Functionalized HKUST-1 Analogues Assembled via Reticulation of Prefabricated Metal-Organic Polyhedral Cavities

    Get PDF
    Metal-organic frameworks (MOFs) assembled from multiple building blocks exhibit greater chemical complexity and superior functionality in practical applications. Herein, we report a new approach based on using prefabricated cavities to design isoreticular multicomponent MOFs from a known parent MOF. We demonstrate this concept with the formation of multicomponent HKUST-1 analogues, using a prefabricated cavity that comprises a cuboctahedral Rh(II) metal-organic polyhedron functionalized with 24 carboxylic acid groups. The cavities are reticulated in three dimensions via Cu(II)-paddlewheel clusters and (functionalized) 1,3,5-benzenetricarboxylate linkers to form three- and four-component HKUST-1 analogues

    Multicomponent, Functionalized HKUST‑1 Analogues Assembled via Reticulation of Prefabricated Metal–Organic Polyhedral Cavities [Dataset]

    Get PDF
    89 pages. -- PDF file includes: S1. Materials and methods; S1.1. Materials and characterization; S1.2. Experimental methods; S1.2.1. Synthesis of COOH-RhMOP, (Br)btc, (NO2)btc and (COOH)btc; S1.2.2. Stability of COOH-RhMOP under solvothermal conditions; S1.2.3. Synthesis of RhCu-btc-HKUST-1, RhCu-(Br)btc-HKUST-1, RhCu-(NO2)btc-HKUST-1, RhCu-(NH2)btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S.1.2.4. Blank reactions for RhCu-btc-HKUST-1; S.1.2.5. Acidic disassembly of RhCu-btc-HKUST-1; S.1.2.6. Acidic digestion of RhCu-(Br)btc-HKUST-1, RhCu-(NO2)btc-HKUST-1, RhCu-(NH2)btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S1.2.7. Study of the hydrolytic stability of RhCu-btc-HKUST-1 and Cu(II)-HKUST- 1; S1.2.8 Study of the methylene blue removal with RhCu-btc-HKUST-1 and Cu(II)-HKUST-1; S1.2.9. Study of the catalytic activity of RhCu-btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S1.3. Computational methods; S2. Characterization of RhCu-btc-HKUST-1; S3. Characterization of Cu(II)-HKUST-1; S4. Hydrolytic stability study of RhCu-btc-HKUST-1 and Cu(II)-HKUST-1; S4.1. DFT calculations of Rh(II) and Cu(II) paddlewheels in water; S5. Characterization of RhCu-(Br)btc-HKUST-1; S6. Characterization of RhCu-(NO2)btc-HKUST-1; S7. Characterization of RhCu-(NH2)btc-HKUST-1; S8. Characterization of RhCu-(COOH)btc-HKUST-1.Metal–organic frameworks (MOFs) assembled from multiple building blocks exhibit greater chemical complexity and superior functionality in practical applications. Herein, we report a new approach based on using prefabricated cavities to design isoreticular multicomponent MOFs from a known parent MOF. We demonstrate this concept with the formation of multicomponent HKUST-1 analogues, using a prefabricated cavity that comprises a cuboctahedral Rh­(II) metal–organic polyhedron functionalized with 24 carboxylic acid groups. The cavities are reticulated in three dimensions via Cu­(II)-paddlewheel clusters and (functionalized) 1,3,5-benzenetricarboxylate linkers to form three- and four-component HKUST-1 analogues.Peer reviewe

    Net-clipping : an approach to deduce the topology of metal-organic frameworks built with zigzag ligands

    No full text
    Altres ajuts: it was also funded by the CERCA Program/Generalitat de Catalunya.Herein we propose a new approach for deducing the topology of metal-organic frameworks (MOFs) assembled from organic ligands of low symmetry, which we call net-clipping. It is based on the construction of nets by rational deconstruction of edge-transitive nets comprising higher-connected molecular building blocks (MBBs). We have applied net-clipping to predict the topologies of MOFs containing zigzag ligands. To this end, we derived 2-connected (2-c) zigzag ligands from 4-c square-like MBBs by first splitting the 4-c nodes into two 3-c nodes and then clipping their two diagonally connecting groups. We demonstrate that, when this approach is applied to the 17 edge-transitive nets containing square-like 4-c MBBs, net-clipping leads to generation of 10 nets with different underlying topologies. Moreover, we report that literature and experimental research corroborate successful implementation of our approach. As proof-of-concept, we employed net-clipping to form three new MOFs built with zigzag ligands, each of which exhibits the deduced topology

    Metal- and covalent-organic framework mixed matrix membranes for CO2 separation : A perspective on stability and scalability

    Get PDF
    Membrane technology has attracted great industrial interest in carbon capture and separation owing to the merits of energy-efficiency, environmental friendliness and low capital investment. Conventional polymeric membranes for CO separation suffer from the trade-off between permeability and selectivity. Introducing porous fillers in polymers is one approach to enhance membrane separation performance. Metal-organic frameworks (MOFs), with ordered porous structure and diverse chemical functionalities, are promising fillers to prepare mixed matrix membranes (MMMs) for CO separation. However, the main issue of MOF based MMMs in industry is their stability and processability. This review analyses recent work on stable and scalable MOF based MMMs for CO separation. The typical stable MOFs, MOF-based MMMs and the scalable MOF synthesis are summarized. A large number of MOF-based MMM suffer from instability upon exposure to contaminants. For that reason, we also discuss the use of covalent organic frameworks (COFs) as an alternative to prepare MMMs for CO separation, considering their excellent stability and good compatibility with polymers. Finally, a brief conclusion and current challenges on obtaining scalable and stable MMMs are outlined. This review may provide some guidance for designing high performance MMMs for industrial CO capture and separation to help achieving carbon neutrality
    corecore