69 research outputs found

    Rescuing Lethal Phenotypes Induced by Disruption of Genes in Mice: a Review of Novel Strategies

    Get PDF
    Approximately 35 % of the mouse genes are indispensable for life, thus, global knock-out (KO) of those genes may result in embryonic or early postnatal lethality due to developmental abnormalities. Several KO mouse lines are valuable human disease models, but viable homozygous mutant mice are frequently required to mirror most symptoms of a human disease. The site-specific gene editing systems, the transcription activator-like effector nucleases (TALENs), Zinc-finger nucleases (ZFNs) and the clustered regularly interspaced short palindrome repeat-associated Cas9 nuclease (CRISPR/Cas9) made the generation of KO mice more efficient than before, but the homozygous lethality is still an undesired side-effect in case of many genes. The literature search was conducted using PubMed and Web of Science databases until June 30(th), 2020. The following terms were combined to find relevant studies: “lethality”, “mice”, “knock-out”, “deficient”, “embryonic”, “perinatal”, “rescue”. Additional manual search was also performed to find the related human diseases in the Online Mendelian Inheritance in Man (OMIM) database and to check the citations of the selected studies for rescuing methods. In this review, the possible solutions for rescuing human disease-relevant homozygous KO mice lethal phenotypes were summarized

    Glomerulosclerosis in transgenic rabbits with ubiquitous Venus protein expression

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is a potential cause of nephrotic syndrome both in humans and pet mammals. Glomerulopathy was reported earlier in green fluorescent protein (GFP) transgenic (TG) mice, but glomerulosclerosis has not been examined in GFP TG rabbits so far. In the present study, the potential manifestation of FSGS was investigated in both Venus TG rabbits generated by Sleeping Beauty (SB) transposition and age-matched control New Zealand White (NZW) rabbits. Venus protein fluorescence was detected by confocal microscopy and quantified by microplate reader. Urinalysis, haematology, serum biochemistry and renal histology were performed to assess the signs of FSGS. Higher levels of Venus fluorescence were determined in renal cortex samples than in the myocardium by both methods. Urinalysis revealed proteinuria in Venus heterozygote TG bucks, while Venus homozygote TG bucks developed microscopic haematuria. Supporting the urinalysis data, the histological findings of FSGS (glomerulomegaly and sclerotic glomeruli) were observed in renal cortex sections of Venus TG rabbits. Taken together, Venus TG bucks were diagnosed with FSGS; thus, this type of glomerulopathy could be a common disease in TG animals overexpressing GFP

    A convenient method to pre-screen candidate guide RNAs for CRISPR/Cas9 gene editing by NHEJ-mediated integration of a 'self-cleaving' GFP-expression plasmid.

    Get PDF
    The efficacies of guide RNAs (gRNAs), the short RNA molecules that bind to and determine the sequence specificity of the Streptococcus pyogenes Cas9 nuclease, to mediate DNA cleavage vary dramatically. Thus, the selection of appropriate target sites, and hence spacer sequence, is critical for most applications. Here, we describe a simple, unparalleled method for experimentally pre-testing the efficiencies of various gRNAs targeting a gene. The method explores NHEJ-cloning, genomic integration of a GFP-expressing plasmid without homologous arms and linearized in-cell. The use of 'self- cleaving' GFP-plasmids containing universal gRNAs and corresponding targets alleviates cloning burdens when this method is applied. These universal gRNAs mediate efficient plasmid cleavage and are designed to avoid genomic targets in several model species. The method combines the advantages of the straightforward FACS detection provided by applying fluorescent reporter systems and of the PCR-based approaches being capable of testing targets in their genomic context, without necessitating any extra cloning steps. Additionally, we show that NHEJ-cloning can also be used in mammalian cells for targeted integration of donor plasmids up to 10 kb in size, with up to 30% efficiency, without any selection or enrichment

    Presence of Systemic Amyloidosis in Mice with Partial Deficiency in Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Aging

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide with widespread expression and general cytoprotective effects, is also involved in aging. Previously, we observed accelerated systemic senile amyloidosis in PACAP knockout (KO) mice. As mice partially lacking PACAP (heterozygous-HZ) show variable symptoms, here we investigated whether HZ mice have accelerated aging, completed with observations in PAC1 receptor KO mice. As we have limited data on qualitative or quantitative changes in the blood of PACAP-deficient mice, we investigated whether these changes could be in the background of the amyloidosis. Routine histological staining was used to examine amyloid deposits, rated on a severity scale 0–3. Blood was collected from PACAP wild type/HZ mice for complete blood analysis. In contrast to receptor KO mice showing no amyloidosis, histopathological analysis revealed severe deposits in PACAP HZ mice, with kidney, spleen, skin, and intestines being most affected. Increased cholesterol, lipoprotein levels, and differences in several blood count parameters were found in HZ mice. In summary, amyloidosis also develops in partial absence of PACAP, in contrast to the lack of its PAC1 receptor. In addition to the earlier identified inflammatory and degenerative disturbances, the alteration in lipid metabolism and bone marrow activity can also be additional factors leading to systemic degenerative processes

    CRISPR/Cas9-Mediated Knock-Out of dUTPase in Mice Leads to Early Embryonic Lethality

    Get PDF
    Sanitization of nucleotide pools is essential for genome maintenance. Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) is a key enzyme in this pathway since it catalyzes the cleavage of 2′-deoxyuridine 5′-triphosphate (dUTP) into 2′-deoxyuridine 5′-monophosphate (dUMP) and inorganic pyrophosphate. Through its action dUTPase efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis. Despite its physiological significance, knock-out models of dUTPase have not yet been investigated in mammals, but only in unicellular organisms, such as bacteria and yeast. Here we generate CRISPR/Cas9-mediated dUTPase knock-out in mice. We find that heterozygous dut +/– animals are viable while having decreased dUTPase levels. Importantly, we show that dUTPase is essential for embryonic development since early dut −/− embryos reach the blastocyst stage, however, they die shortly after implantation. Analysis of pre-implantation embryos indicates perturbed growth of both inner cell mass (ICM) and trophectoderm (TE). We conclude that dUTPase is indispensable for post-implantation development in mice

    Soluble Syndecan-1 Levels Are Associated with Survival in Platinum-Treated Bladder Cancer Patients

    Get PDF
    Cisplatin-containing chemotherapy represents the first-line treatment for patients with locally advanced or metastatic muscle-invasive bladder cancer. Recently, novel therapies have become available for cisplatin-ineligible or -resistant patients. Therefore, prediction of cisplatin response is required to optimize therapy decisions. Syndecan-1 (SDC1) tissue expression and serum concentration may be associated with cisplatin resistance. Thus, pre-treatment serum levels of SDC1 and its expression in chemo-naïve tissues were assessed in 121 muscle-invasive bladder cancer patients who underwent postoperative platinum-based chemotherapy. SDC1 concentrations were evaluated by ELISA in 52 baseline and 90 follow-up serum samples and tissue expressions were analyzed by immunohistochemistry in an independent cohort of 69 formalin-fixed paraffin-embedded tumor samples. Pre-treatment SDC1 serum levels were significantly higher in lymph node metastatic (p = 0.009) and female patients (p = 0.026). SDC1 tissue expression did not correlate with clinicopathological parameters. High pre-treatment SDC1 serum level and the presence of distant metastasis were independent risk factors for overall survival (Hazard ratio (HR): 1.439, 95% Confidence interval (CI): 1.003–2.065, p = 0.048; HR: 2.269, 95%CI: 1.053–4.887, p = 0.036). Our results demonstrate an independent association between high baseline serum SDC1 concentration and poor survival in platinum-treated patients. Analyzing baseline serum SDC1 levels may help to predict platinum-containing chemotherapy and could help to optimize therapeutic decision-making

    Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data

    Get PDF
    Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models, all including local traffic and land use variables, were compared (LUR without SAT or CTM, with SAT only, with CTM only, and with both SAT and CTM). LUR models were developed using two monitoring data sets: PM2.5 and NO2 ground level measurements from the European Study of Cohorts for Air Pollution Effects (ESCAPE) and from the European AIRBASE network. LUR PM2.5 models including SAT and SAT+CTM explained ~60% of spatial variation in measured PM2.5 concentrations, substantially more than the LUR model without SAT and CTM (adjR(2): 0.33-0.38). For NO2 CTM improved prediction modestly (adjR(2): 0.58) compared to models without SAT and CTM (adjR(2): 0.47-0.51). Both monitoring networks are capable of producing models explaining the spatial variance over a large study area. SAT and CTM estimates of PM2.5 and NO2 significantly improved the performance of high spatial resolution LUR models at the European scale for use in large epidemiological studies
    corecore