208 research outputs found
Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation
Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency
Vaccination against Foot-and-mouth disease : do initial conditions affect its benefit?
When facing incursion of a major livestock infectious disease, the decision to implement a vaccination programme is made at the national level. To make this decision, governments must consider whether the benefits of vaccination are sufficient to outweigh potential additional costs, including further trade restrictions that may be imposed due to the implementation of vaccination. However, little consensus exists on the factors triggering its implementation on the field. This work explores the effect of several triggers in the implementation of a reactive vaccination-to-live policy when facing epidemics of foot-and-mouth disease. In particular, we tested whether changes in the location of the incursion and the delay of implementation would affect the epidemiological benefit of such a policy in the context of Scotland. To reach this goal, we used a spatial, premises-based model that has been extensively used to investigate the effectiveness of mitigation procedures in Great Britain. The results show that the decision to vaccinate, or not, is not straightforward and strongly depends on the underlying local structure of the population-at-risk. With regards to disease incursion preparedness, simply identifying areas of highest population density may not capture all complexities that may influence the spread of disease as well as the benefit of implementing vaccination. However, if a decision to vaccinate is made, we show that delaying its implementation in the field may markedly reduce its benefit. This work provides guidelines to support policy makers in their decision to implement, or not, a vaccination-to-live policy when facing epidemics of infectious livestock disease
Bacterial genomics reveal the complex epidemiology of an emerging pathogen in Arctic and boreal ungulates
Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors
Verslag jaarcongres AHF:Het jaarcongres van de Arbeitskreis für Hausforschung in Neustadt an der Weinstrasse, van 3 tot 6 oktober 2016
Quantifying transmission of Mycobacterium avium subsp. paratuberculosis among group-housed dairy calves
International audienceAbstractJohne’s disease (JD) is a chronic enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), with control primarily aimed at preventing new infections among calves. The aim of the current study was to quantify calf-to-calf transmission of MAP among penmates in an experimental trial. Newborn Holstein bull calves (n = 32) were allocated into pens of 4, with 2 inoculated (IN) calves and 2 calves that were contact exposed (CE). Calves were group-housed for 3 months, with frequent collection of fecal and blood samples and tissue collection after euthanasia. The basic reproduction ratio (R0) was estimated using a final size (FS) model with a susceptible-infected model, based on INF-γ ELISA and tissue culture followed by qPCR. In addition, the transmission rate parameter (β) for new shedding events was estimated using a general linearized method (GLM) model with a susceptible-infected-susceptible model based on culture, followed by qPCR, of fecal samples collected during group housing. The R0 was derived for IN and CE calves separately, due to a difference in susceptibility, as well as differences in duration of shedding events. Based on the FS model, interferon-γ results from blood samples resulted in a R0IG of 0.90 (0.24, 2.59) and tissue culture resulted in a R0T of 1.36 (0.45, 3.94). Based on the GLM model, the R0 for CE calves to begin shedding (R0CE) was 3.24 (1.14, 7.41). We concluded that transmission of MAP infection between penmates occurred and that transmission among calves may be an important cause of persistent MAP infection on dairy farms that is currently uncontrolled for in current JD control programs
Redefining the "carrier" state for foot-and-mouth disease from the dynamics of virus persistence in endemically affected cattle populations
The foot-and-mouth disease virus (FMDV) “carrier” state was defined by van Bekkum in 1959. It was based on the recovery of infectious virus 28 days or more post infection and has been a useful construct for experimental studies. Using historic data from 1,107 cattle, collected as part of a population based study of endemic FMD in 2000, we developed a mixed effects logistic regression model to predict the probability of recovering viable FMDV by probang and culture, conditional on the animal’s age and time since last reported outbreak. We constructed a second set of models to predict the probability of an animal being probang positive given its antibody response in three common non-structural protein (NSP) ELISAs and its age. We argue that, in natural ecological settings, the current definition of a ”carrier” fails to capture the dynamics of either persistence of the virus (as measured by recovery using probangs) or the uncertainty in transmission from such animals that the term implies. In these respects it is not particularly useful. We therefore propose the first predictive statistical models for identifying persistently infected cattle in an endemic setting that captures some of the dynamics of the probability of persistence. Furthermore, we provide a set of predictive tools to use alongside NSP ELISAs to help target persistently infected cattle
Contrasting transcriptional programs control postharvest development of apples (Malus x domestica Borkh.) submitted to cold storage and ethylene blockage.
Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes. KEYWORDS: 1-methylcyclopropene, firmness, fruit quality, gene expression, microarra
The role of gowns in preventing nosocomial transmission of respiratory viruses:a systematic review
Background: During the COVID-19 pandemic, long-sleeved gowns were advocated as personal protective equipment for healthcare workers (HCWs). The purpose of gowns is preventing transmission of infectious agents via the uniform or arms during contact with patients and their surroundings. Gowns, however, entail a substantial burden; in costs, workload for HCWs, and generated waste. Aim: To evaluate the current knowledge regarding the use of gowns during care of patients with COVID-19 and other respiratory viruses to prevent nosocomial transmission. Methods: PRISMA guidelines were used to search five databases (Medline, Embase, Web of Science, Cochrane, Google Scholar) up to April 11th, 2023. Findings: The search identified 2667 potentially relevant studies, of which 30 were selected and divided into four categories. In 12 studies, contamination rates of gowns ranged from 0% to 77.5% (median: 1.43%). Three out of seven studies showed that virus remained infectious the longest on Tyvek coveralls and plastic gowns, and the shortest on cotton and polyester. Two out of seven studies found a protective effect between HCW protective clothing and infection of HCWs. Finally, three out of four studies concluded that short sleeves, cotton gowns, or no gowns provided the same level of protection as standard gowns. Conclusion: Viral RNA can be found on clothing, but it is unclear whether viruses are transmitted to HCWs and/or patients. Evidence for the protective effect of long-sleeved gowns over alternatives is still insufficient. Therefore, well-controlled and adequately powered laboratory transmission experiments that simulate real-life conditions are necessary.</p
Dichotomy in the NRT Gene Families of Dicots and Grass Species
A large proportion of the nitrate (NO3−) acquired by plants from soil is actively transported via members of the NRT families of NO3− transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO3− transporters and NO3− transport in grass crop species
Selective treatment of nonsevere clinical mastitis does not adversely affect cure, somatic cell count, milk yield, recurrence, or culling: A systematic review and meta-analysis
Treatment of clinical mastitis (CM) contributes to antimicrobial use on dairy farms. Selective treatment of CM based on bacterial diagnosis can reduce antimicrobial use, as not all cases of CM will benefit from antimicrobial treatment, e.g., mild and moderate gram-negative infections. However, impacts of selective CM treatment on udder health and culling are not fully understood. A systematic search identified 13 studies that compared selective versus blanket CM treatment protocols. Reported outcomes were synthesized with random-effects models and presented as risk ratios or mean differences. Selective CM treatment protocol was not inferior to blanket CM treatment protocol for the outcome bacteriological cure. Noninferiority margins could not be established for the outcomes clinical cure, new intramammary infection, somatic cell count, milk yield, recurrence, or culling. However, no differences were detected between selective and blanket CM treatment protocols using traditional analyses, apart from a not clinically relevant increase in interval from treatment to clinical cure (0.4 d) in the selective group and higher proportion of clinical cure at 14 d in the selective group. The latter occurred in studies co-administering nonsteroidal anti-inflammatories only in the selective group. Bias could not be ruled out in most studies due to suboptimal randomization, although this would likely only affect subjective outcomes such as clinical cure. Hence, findings were supported by a high or moderate certainty of evidence for all outcome measures except clinical cure. In conclusion, this review supported the assertion that a selective CM treatment protocol can be adopted without adversely influencing bacteriological and clinical cure, somatic cell count, milk yield, and incidence of recurrence or culling.fals
- …
