6 research outputs found

    Occurrence of Dibothriocephalus latus in European perch from Alpine lakes, an important focus of diphyllobothriosis in Europe

    Get PDF
    The broad fish tapeworm Dibothriocephalus latus (syn. Diphyllobothrium latum) is one of the most common causative agents of human diphyllobothriosis, a significant fish-borne parasitic zoonosis. In Europe, the occurrence of D. latus has been repeatedly reported in lakes of the Alps region, the Baltic region, Fennoscandia and Russia. Regular detection of D. latus plerocercoids in fish coming from different subalpine lakes linked with ongoing D. latus infection in humans indicates that Alpine region is a rather specific area from the medical, epidemiological and ecological point of view. Results from the examination of 688 European perch (Perca fluviatilis) from six subalpine lakes in Switzerland, France and northern Italy (Lakes Geneva, Neuchâtel, Biel, Como, Maggiore and Iseo) confirmed the ongoing occurrence of D. latus in the Alps region. The detected prevalence of D. latus in the studied Alpine lakes (2% in Lake Neuchâtel; 37.5% in Lake Biel; 6.4% in Lake Geneva; 22.8% in Lake Iseo [2018]; 12.8% in Lake Iseo [2017]; 15.2% in Lake Como; 16.7% in Lake Maggiore) was compared with previously published data. In addition, the importance of the Alpine lakes region and data on the epidemiology and ecology of D. latus related to subalpine lakes were discussed

    Hooking the scientific community on thorny-headed worms: interesting and exciting facts, knowledge gaps and perspectives for research directions on Acanthocephala

    Get PDF
    Although interest in Acanthocephala seems to have reached only a small community of researchers worldwide, we show in this opinion article that this group of parasites is composed of excellent model organisms for studying key questions in parasite molecular biology and cytogenetics, evolutionary ecology, and ecotoxicology. Their shared ancestry with free-living rotifers makes them an ideal group to explore the origins of the parasitic lifestyle and evolutionary drivers of host shifts and environmental transitions. They also provide useful features in the quest to decipher the proximate mechanisms of parasite-induced phenotypic alterations and better understand the evolution of behavioral manipulation. From an applied perspective, acanthocephalans’ ability to accumulate contaminants offers useful opportunities to monitor the impacts – and evaluate the possible mitigation – of anthropogenic pollutants on aquatic fauna and develop the environmental parasitology framework. However, exploring these exciting research avenues will require connecting fragmentary knowledge by enlarging the taxonomic coverage of molecular and phenotypic data. In this opinion paper, we highlight the needs and opportunities of research on Acanthocephala in three main directions: (i) integrative taxonomy (including non-molecular tools) and phylogeny-based comparative analysis; (ii) ecology and evolution of life cycles, transmission strategies and host ranges; and (iii) environmental issues related to global changes, including ecotoxicology. In each section, the most promising ideas and developments are presented based on selected case studies, with the goal that the present and future generations of parasitologists further explore and increase knowledge of Acanthocephala

    Effect of fungicide Euparen Multi (Tolylfluanid) on the induction of chromosomal aberations in cultivated bovine lymphocytes

    No full text
    The effect of the fungicide Euparen Multi (containing 50% tolylfluanid) was investigated on the induction of chromosomal aberrations (CA) in cultured bovine peripheral lymphocytes. Cultures from two healthy donors were treated with tolylfluanid-based fungicide at concentrations ranging from 1.7 to 17.5 ÎĽg/ml for the last 24 and 48 hours of cultivation. Conventional cytogenetic method (CA assay) with Giemsa staining as well as fluorescence in situ hybridization (FISH) with whole bovine chromosomes 1 and 5 painting probes were used in the experiment. In the CA assay, no clastogenic effect of the fungicide was found after Euparen Multi treatment for 24 hours. On the contrary, significant elevation in polyploidy induction was observed with dose-dependence in one of the donors. Using prolonged time of exposure to the fungicide (the last 48 h of the cultivation), a slight clastogenic effect was detected at the doses of 8.75 and 17.5 ÎĽg/ml (P < 0.05, P < 0.01, respectively) in donor 1 and at the dose of 8.75 ÎĽg/ml (P < 0.05) in donor 2. The highest doses tested caused reduction of the mitotic indices (MI) (P < 0.05, P < 0.01) in both donors as well as both treatment times. The evaluation of stable structural aberrations in lymphocytes by two-colour FISH (48 h exposure) using bovine chromosome painting probes revealed the presence of nonreciprocal translocations at two examined concentrations (3.5 ÎĽg/ml and 8.75 ÎĽg/ml)

    Hooking the scientific community on thorny-headed worms: interesting and exciting facts, knowledge gaps and perspectives for research directions on Acanthocephala

    No full text
    International audienceAlthough interest in Acanthocephala seems to have reached only a small community of researchers worldwide, we show in this opinion article that this group of parasites is composed of excellent model organisms for studying key questions in parasite molecular biology and cytogenetics, evolutionary ecology, and ecotoxicology. Their shared ancestry with free-living rotifers makes them an ideal group to explore the origins of the parasitic lifestyle and evolutionary drivers of host shifts and environmental transitions. They also provide useful features in the quest to decipher the proximate mechanisms of parasite-induced phenotypic alterations and better understand the evolution of behavioral manipulation. From an applied perspective, acanthocephalans’ ability to accumulate contaminants offers useful opportunities to monitor the impacts – and evaluate the possible mitigation – of anthropogenic pollutants on aquatic fauna and develop the environmental parasitology framework. However, exploring these exciting research avenues will require connecting fragmentary knowledge by enlarging the taxonomic coverage of molecular and phenotypic data. In this opinion paper, we highlight the needs and opportunities of research on Acanthocephala in three main directions: (i) integrative taxonomy (including non-molecular tools) and phylogeny-based comparative analysis; (ii) ecology and evolution of life cycles, transmission strategies and host ranges; and (iii) environmental issues related to global changes, including ecotoxicology. In each section, the most promising ideas and developments are presented based on selected case studies, with the goal that the present and future generations of parasitologists further explore and increase knowledge of Acanthocephala
    corecore