150 research outputs found

    Fuzzy differential subordinations connected with the linear operator

    Get PDF
    summary:We obtain several fuzzy differential subordinations by using a linear operator Im,γn,αf(z)=z+k=2(1+γ(k1))nmα(m+k)αakzk\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}. Using the linear operator Im,γn,α,\mathcal {I}_{m,\gamma }^{n,\alpha }, we also introduce a class of univalent analytic functions for which we give some properties

    Tests of the random phase approximation for transition strengths

    Get PDF
    We investigate the reliability of transition strengths computed in the random-phase approximation (RPA), comparing with exact results from diagonalization in full 0ω0\hbar\omega shell-model spaces. The RPA and shell-model results are in reasonable agreement for most transitions; however some very low-lying collective transitions, such as isoscalar quadrupole, are in serious disagreement. We suggest the failure lies with incomplete restoration of broken symmetries in the RPA. Furthermore we prove, analytically and numerically, that standard statements regarding the energy-weighted sum rule in the RPA do not hold if an exact symmetry is broken.Comment: 11 pages, 7 figures; Appendix added with new proof regarding violation of energy-weighted sum rul

    Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Background and Purpose: Calcification of heart valves is a frequent pathological finding in chronic kidney disease and in elderly patients. Hydrogen sulfide (H2S) may exert anti-calcific actions. Here we investigated H2S as an inhibitor of valvular calcification and to identify its targets in the pathogenesis. Experimental Approach: Effects of H2S on osteoblastic transdifferentiation of valvular interstitial cells (VIC) isolated from samples of human aortic valves were studied using immunohistochemistry and western blots. We also assessed H2S on valvular calcification in apolipoprotein E-deficient (ApoE−/−) mice. Key Results: In human VIC, H2S from donor compounds (NaSH, Na2S, GYY4137, AP67, and AP72) inhibited mineralization/osteoblastic transdifferentiation, dose-dependently in response to phosphate. Accumulation of calcium in the extracellular matrix and expression of osteocalcin and alkaline phosphatase was also inhibited. RUNX2 was not translocated to the nucleus and phosphate uptake was decreased. Pyrophosphate generation was increased via up-regulating ENPP2 and ANK1. Lowering endogenous production of H2S by concomitant silencing of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) favoured VIC calcification. analysis of human specimens revealed higher Expression of CSE in aorta stenosis valves with calcification (AS) was higher than in valves of aortic insufficiency (AI). In contrast, tissue H2S generation was lower in AS valves compared to AI valves. Valvular calcification in ApoE−/− mice on a high-fat diet was inhibited by H2S. Conclusions and Implications: The endogenous CSE-CBS/H2S system exerts anti-calcification effects in heart valves providing a novel therapeutic approach to prevent hardening of valves

    New evidence for a subshell gap at N = 32

    Get PDF
    Abstract An 879.9(2) keV γ -ray transition has been identified following the β decay of 58 V and assigned as the 2 58 Cr 34 . A peak in the energies of the first excited 2 + states for the even-even chromium isotopes is now evident at 56 Cr 32 , providing empirical evidence for a significant subshell gap at N = 32. The appearance of this neutron subshell closure for neutron-rich nuclides may be attributed to the diminished π1f 7/2 -ν1f 5/2 monopole proton-neutron interaction as protons are removed from the 1f 7/2 single-particle orbital. 2001 Elsevier Science B.V. All rights reserved. PACS: 21.60.Cs; 23.20.Lv; 27.40.+z Trends in nuclear masses and binding energies have suggested nuclei associated with nucleon numbers expected to be maximum at midshell. However, the development of collectivity away from major closed shells may be inhibited by the presence of subshell closures, or minor shell gaps. In order to study such phenomena, experimental probes of quadrupole collectivity may be utilized. One measure of the extent of quadrupole collectivity in even-even nuclear systems is the energy of the first excited 2 + state, E(2 + 1 ). According to Grodzins [2

    Diabetes mellitus, maternal adiposity, and insulin-dependent gestational diabetes are associated with COVID-19 in pregnancy: the INTERCOVID study

    Get PDF
    BACKGROUND: Among nonpregnant individuals, diabetes mellitus and high body mass index increase the risk of COVID-19 and its severity.OBJECTIVE: This study aimed to determine whether diabetes mellitus and high body mass index are risk factors for COVID-19 in pregnancy and whether gestational diabetes mellitus is associated with COVID-19 diagnosis.STUDY DESIGN: INTERCOVID was a multinational study conducted between March 2020 and February 2021 in 43 institutions from 18 countries, enrolling 2184 pregnant women aged >= 18 years; a total of 2071 women were included in the analyses. For each woman diagnosed with COVID-19, 2 nondiagnosed women delivering or initiating antenatal care at the same institution were also enrolled. The main exposures were preexisting diabetes mellitus, high body mass index (overweight or obesity was defined as a body mass index >= 25 kg/m(2)), and gestational diabetes mellitus in pregnancy. The main outcome was a confirmed diagnosis of COVID-19 based on a real-time polymerase chain reaction test, antigen test, antibody test, radiological pulmonary findings, or >= 2 predefined COVID-19 symptoms at any time during pregnancy or delivery. Relationships of exposures and COVID-19 diagnosis were assessed using generalized linear models with a Poisson distribution and log link function, with robust standard errors to account for model misspecification. Furthermore, we conducted sensitivity analyses: (1) restricted to those with a real-time polymerase chain reaction test or an antigen test in the last week of pregnancy, (2) restricted to those with a real-time polymerase chain reaction test or an antigen test during the entire pregnancy, (3) generating values for missing data using multiple imputation, and (4) analyses controlling for month of enrollment. In addition, among women who were diagnosed with COVID-19, we examined whether having gestational diabetes mellitus, diabetes mellitus, or high body mass index increased the risk of having symptomatic vs asymptomatic COVID-19.RESULTS: COVID-19 was associated with preexisting diabetes mellitus (risk ratio, 1.94; 95% confidence interval, 1.55-2.42), overweight or obesity (risk ratio, 1.20; 95% confidence interval, 1.06-1.37), and gestational diabetes mellitus (risk ratio, 1.21; 95% confidence interval, 0.99-1.46). The gestational diabetes mellitus association was specifically among women requiring insulin, whether they were of normal weight (risk ratio, 1.79; 95% confidence interval, 1.06-3.01) or overweight or obese (risk ratio, 1.77; 95% confidence interval, 1.28-2.45). A somewhat stronger association with COVID-19 diagnosis was observed among women with preexisting diabetes mellitus, whether they were of normal weight (risk ratio, 1.93; 95% confidence interval, 1.18-3.17) or overweight or obese (risk ratio, 2.32; 95% confidence interval, 1.82-2.97). When the sample was restricted to those with a real-time polymerase chain reaction test or an antigen test in the week before delivery or during the entire pregnancy, including missing variables using imputation or controlling for month of enrollment, the observed associations were comparable.CONCLUSION: Diabetes mellitus and overweight or obesity were risk factors for COVID-19 diagnosis in pregnancy, and insulin-dependent gestational diabetes mellitus was associated with the disease. Therefore, it is essential that women with these comorbidities are vaccinated

    Bar-Coded Pyrosequencing Reveals the Responses of PBDE-Degrading Microbial Communities to Electron Donor Amendments

    Get PDF
    Polybrominated diphenyl ethers (PBDEs) can be reductively degraded by microorganisms under anaerobic conditions. However, little is known about the effect of electron donors on microbial communities involved in PBDEs degradation. Here we employed 454 Titanium pyrosequencing to examine the phylogenetic diversity, composition, structure and dynamics of microbial communities from microcosms under the conditions of different electron donor amendments. The community structures in each of the five alternate electron donor enrichments were significantly shifted in comparison with those of the control microcosm. Commonly existing OTUs between the treatment and control consortia increased from 5 to 17 and more than 50% of OTUs increased around 13.7 to 186 times at least in one of the microcosms after 90-days enrichment. Although the microbial communities at different taxonomic levels were significantly changed by different environmental variable groups in redundancy analysis, significant correlations were observed between the microbial communities and PBDE congener profiles. The lesser-brominated PBDE congeners, tri-BDE congener (BDE-32) and hexa-BDE, were identified as the key factors shaping the microbial community structures at OTU level. Some rare populations, including the known dechlorinating bacterium, Dehalobacter, showed significant positive-correlation with the amounts of PBDE congeners in the consortia. The same results were also observed on some unclassified bacteria. These results suggest that PBDEs-degrading microbial communities can be successfully enriched, and their structures and compositions can be manipulated through adjusting the environmental parameters
    corecore