1,594 research outputs found

    Computer program for liquid metal condensing heat transfer coefficients inside tubes manual

    Get PDF
    Computer program for calculation of liquid metal condensing heat transfer coefficients inside tube

    Structure of strongly coupled, multi-component plasmas

    Get PDF
    We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification

    Implementation of the Hierarchical Reference Theory for simple one-component fluids

    Full text link
    Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and thermodynamics, the Hierarchical Reference Theory is known to be successful even in the vicinity of the critical point and for sub-critical temperatures. We here present a software package independent of earlier programs for the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair potentials, restricting ourselves to hard sphere reference systems. Using the hard-core Yukawa potential with z=1.8/sigma for illustration, we discuss our implementation and the results it yields, paying special attention to the core condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio

    Foundations for Relativistic Quantum Theory I: Feynman's Operator Calculus and the Dyson Conjectures

    Full text link
    In this paper, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson's second conjecture for QED. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman's path integral, and to prove Dyson's first conjecture that the divergences are in part due to a violation of Heisenberg's uncertainly relations

    On the exchange of intersection and supremum of sigma-fields in filtering theory

    Full text link
    We construct a stationary Markov process with trivial tail sigma-field and a nondegenerate observation process such that the corresponding nonlinear filtering process is not uniquely ergodic. This settles in the negative a conjecture of the author in the ergodic theory of nonlinear filters arising from an erroneous proof in the classic paper of H. Kunita (1971), wherein an exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page

    Einstein's fluctuation formula. A historical overview

    Get PDF
    A historical overview is given on the basic results which appeared by the year 1926 concerning Einstein's fluctuation formula of black-body radiation, in the context of light-quanta and wave-particle duality. On the basis of the original publications (from Planck's derivation of the black-body spectrum and Einstein's introduction of the photons up to the results of Born, Heisenberg and Jordan on the quantization of a continuum) a comparative study is presented on the first line of thoughts that led to the concept of quanta. The nature of the particle-like fluctuations and the wave-like fluctuations are analysed by using several approaches. With the help of the classical probability theory, it is shown that the infinite divisibility of the Bose distribution leads to the new concept of classical poissonian photo-multiplets or to the binary photo-multiplets of fermionic character. As an application, Einstein's fluctuation formula is derived as a sum of fermion type fluctuations of the binary photo-multiplets.Comment: 34 page

    Multifractal properties of return time statistics

    Full text link
    Fluctuations in the return time statistics of a dynamical system can be described by a new spectrum of dimensions. Comparison with the usual multifractal analysis of measures is presented, and difference between the two corresponding sets of dimensions is established. Theoretical analysis and numerical examples of dynamical systems in the class of Iterated Functions are presented.Comment: 4 pages, 3 figure

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Weak point disorder in strongly fluctuating flux-line liquids

    Get PDF
    We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2+1 dimensions [P. Benetatos and M. C. Marchetti, Phys. Rev. B 64, 054518, (2001)]. In this model, flux lines are allowed to be arbitrarily curved and can even form closed loops. Point defects can be scalar or polar. In the latter case, the direction of their dipole moments can be random or correlated. Within the Gaussian approximation of our hydrodynamic model, we calculate disorder-induced corrections to the correlation functions of the flux-line fields and the elastic moduli of the flux-line liquid. We find that scalar disorder enhances loop nucleation, and polar (magnetic) defects decrease the tilt modulus.Comment: 15 pages, submitted to Pramana-Journal of Physics for the special volume on Vortex State Studie
    corecore