

MANUAL
COMPUTER PROGRAM FOR LIQUID METAL CONDENSING HEAT TRANSFER COEFFICIENTS INSIDE TUBES
by
H. L. Ornstein

prepared for
National Aeronautics and Space Administration
Contract NAS3-2335

Hard copy
(HC) \qquad
Microfiche (MF)

Pratt \& Whitney Aircraft DIVISION OF UNITED AIRCRAFT CORPORATION

MANUAL
COMPUTER PROGRAM FOR LIQUID METAL CONDENSING HEAT TRANSFER COEFFICIENTS INSIDE TUBES

Prepared for
National Aeronautics and Space Administration
Contract NAS3-2335

March 1965

FOREWORD

This report is a manual of computer programming for the calculation of liquid-metal condensing-heattransfer coefficients inside tubes. It was prepared by the Pratt \& Whitney Aircraft Division of United Aircraft Corporation for the National Aeronautics and Space Administration, Lewis Research Center, under Contract NAS3-2335, Experimental Investigation of Heat Rejection Problems in Nuclear Space Powerplants.

TABLE OF CONTENTS

Page
Foreword ii
Table of Contents iii
I. Introduction 1
II. Program Logic 2
III. Input Instructions 9
IV. Printout Format 12
V. Error Printouts 13
Appendix A - Simpson's Rule Integration 14
Appendix B - Method of False Position 18
Appendix C - Tables 23
Appendix D - List of Computer Statements 32
Appendix E-Computer Flow Diagrams 47

I. INTRODUCTION

Report PWA-2530, NASA CR-54352, Analytical Study of Liquid Metal Condensing Inside Tubes, presents a theoretical analysis that can be used to determine the liquid film thickness and condensing-heat-transfer coefficient at an axial location inside a tube where condensing is occurring. The method also enables determination of the liquid-layer shear-stress distribution, liquid velocity profile, eddy diffusivity for momentum, ratio of eddy diffusivities, and liquid temperature profile. The analysis assumes annular two-phase flow inside circular tubes with no liquid entrainment in the gas core. The final equations derived in that report were programmed in Fortran II for the IBM 7094 digital computer.

This manual presents the following items of that computer program in detail:

1) Program logic,
2) Input format and operational instructions,
3) Printout format,
4) Listing of program statements, and
5) Program flow diagram.

II. PROGRAM LOGIC

For a given set of input conditions the program assumes a liquid film thickness and calculates the shear stress distribution and velocity profile within the liquid layer. The program then integrates the velocity profile from the wall to the edge of the film to calculate the liquid flow rate. An iteration routine is used until a film thickness which results in the correct liquid flow rate is found. When the correct liquid flow rate is calculated in this manner, the program calculates the liquid temperature distribution and the condensing-heat-transfer coefficient.

The determination of the correct liquid flow rate is an iterative process which depends upon the value of liquid film thickness and hence upon the liquid fraction $R_{L} *$. In order to start the iteration process, the program calculates the liquid fraction R_{L} based on the LockhartMartinelli correlation. It then uses this value of liquid fraction in the following equation as the initial guess to calculate a corresponding value of the dimensionless liquid film thickness **

$$
\begin{equation*}
\delta^{+}=\mathrm{r}_{\mathrm{o}}^{+}\left(1-\sqrt{1-R_{L}}\right) \tag{1}
\end{equation*}
$$

The liquid film is then divided into 2 N increments whose end points have the following radial locations

$$
\mathrm{y}^{+}=0, \frac{\delta^{+}}{2 \mathrm{~N}}, \frac{2 \delta^{+}}{2 \mathrm{~N}}, \frac{3 \delta^{+}}{2 \mathrm{~N}}, \ldots ., \frac{2 \mathrm{~N} \delta^{+}}{2 \mathrm{~N}}
$$

[^0]The shear stress is evaluated at each of the $2 \mathrm{~N}+\mathrm{l}$ radial locations from the following equation *

$$
\begin{equation*}
\frac{\tau}{r_{o}}=\frac{1+\frac{r_{o}}{2 \tau_{o}}\left[\frac{d P}{d \ell}+\rho_{L} \frac{g}{g_{c}} \cos \theta\right]\left[2\left(\frac{y^{+}}{r_{o}^{+}}\right)-\left(\frac{y^{+}}{r_{o}^{+}}\right)^{2}\right]}{1-\left(\frac{y^{+}}{r_{o}^{+}}\right)} \tag{2}
\end{equation*}
$$

where

$$
\tau_{0}=\frac{r_{0}}{2}\left(\frac{\mathrm{dP}}{\mathrm{~d} \ell}\right)_{\text {friction }}
$$

and**

$$
\frac{d P}{d \ell}=-\left(\frac{d P}{d \ell}\right)_{\text {friction }}+\left(\frac{d P}{d \ell}\right)_{\text {momentum }}+\left(\frac{d P}{d \ell}\right)_{\text {static head }}
$$

The frictional pressure gradient $\left(\frac{d P}{d \ell}\right)_{\text {friction }}$ is a program input item.
The momentum pressure gradient is

$$
\begin{aligned}
& \left(\frac{\mathrm{dP}}{\mathrm{~d} \ell}\right)_{\text {momentum }}=\frac{2}{\pi g_{\mathrm{C}}} \frac{\mathrm{~W}_{\mathrm{T}}}{\mathrm{r}_{0}^{3}} \frac{\mathrm{q}_{\mathrm{O}}}{\lambda}\left[2\left(\frac{1-\mathrm{x}}{\rho_{\mathrm{L}} R_{\mathrm{L}}}-\frac{\mathrm{x}}{\rho_{\mathrm{g}}\left(1-R_{\mathrm{L}}\right)}\right)+\right. \\
& \left.\left(\frac{(1-x)^{2}}{\rho_{L} R_{L}^{2}}-\frac{x^{2}}{\rho_{g}\left(1-R_{L}\right)^{2}}\right) \frac{d R_{L}}{d x}\right]
\end{aligned}
$$

* If τ / τ_{0} is negative at any radial location, the program will proceed with its normal calculations, but an error printout will occur. See Section V for a discussion of error printouts.
**All of the pressure gradient terms in this equation are actual pressure gradients except for the frictional pressure gradient which is the negative of the actual gradient. The pressure gradient terms in the printout are the negative of the actual gradients in all cases.
where $\quad \frac{d R_{L}}{d x} \quad$ is calculated using an empirical expression based upon Lockhart and Martinelli's liquid fraction correlation.

The pressure gradient due to static head is
$\left(\frac{d P}{d \ell}\right)_{\text {static }}=-\cos \theta \frac{g}{g_{c}}\left(R_{L} \rho_{L}+\left(l-R_{L}\right) \rho_{g}\right)$
The values of $\left(\frac{d P}{d \ell}\right)_{\text {momentum }}$ and $\left(\frac{d P}{d \ell}\right)_{\text {static head }}$ are dependent upon R_{L}, therefore the iteration procedure is necessary.
$\frac{\epsilon_{M}}{\nu_{L}}$ is evaluated at each of the selected y^{+}locations from the following
equation

$$
\begin{equation*}
\frac{\epsilon_{M}}{\nu_{L}}=\frac{1}{2}\left[-1+\sqrt{1+4-\frac{\tau}{\tau_{0}}} K^{2} \mathrm{y}^{+2}\left(1-\mathrm{e}^{-\mathrm{y}^{+} / A^{+}}\right)^{2}\right] \tag{3}
\end{equation*}
$$

where $K=0.4$ and $A^{+}=26.0$
Generally, the values obtained for $\frac{\epsilon_{M}}{\nu_{L}}$ from Equation (3) increase with increasing values of y^{+}from a value of zero at the wall $\left(y^{+}=0\right)$. However, under certain conditions $\frac{\epsilon_{M}}{\nu_{L}}$ reaches a maximum within the film, and then decreases. Since this might not be realistic, the program offers two options for the values of $\frac{\epsilon_{M}}{\nu_{L}}$ used in succeeding calculations:
a) Option 1-The program uses the values of $\frac{\epsilon_{M}}{\nu_{L}}$ obtained from Equation (3).
b) Option 2-The program uses the values of $\frac{\epsilon_{M}}{\nu_{L}}$ obtained from Equation (3) until $\frac{\epsilon M}{\nu_{L}}$ reaches a maximum . Beyond that point this maximum value of $\frac{\epsilon M}{\nu_{L}}$ is used.

Once the shear stress distribution and $\frac{\epsilon_{M}}{\nu_{L}}$ are obtained, the program solves for the velocity at each radial location by numerical integration of the following equation

$$
\begin{equation*}
\mathrm{du}^{+}=\frac{\frac{\tau}{\tau_{0}} \mathrm{dy}^{+}}{1+\frac{\epsilon_{\mathrm{M}}}{\nu_{\mathrm{L}}}} \tag{4}
\end{equation*}
$$

Integration of Equation (4) and all subsequent integrations are performed with the aid of Simpson's rule. A discussion of Simpson's rule appears in Appendix A.

Under certain conditions, integration of Equation (4) can result in negative values of u^{+}. If this should occur, the program will continue to solve for the desired flow using the absolute value of u^{+}. In such a case, the program will provide an error printout in addition to its normal printout, since the results of such a case are not valid. See Section V for a discussion on error printouts.

Once the liquid velocities are known at each radial location, the program calculates a liquid flow rate by performing the following integration

$$
\begin{equation*}
\mathrm{w}_{\mathrm{L}}=\frac{2 \pi \rho_{\mathrm{L}} \nu_{\mathrm{L}}^{2}}{\mathrm{~V}^{*}} \int_{0}^{\mathrm{y}^{+}=\delta^{+}} \mathrm{u}^{+}\left(\mathrm{r}_{0}^{+}-\mathrm{y}^{+}\right) \mathrm{dy}^{+} \tag{5}
\end{equation*}
$$

The final solution is obtained when the value of liquid flow rate calculated in this manner is equal to the input liquid flow rate ($1-x$) W_{T} within a specified tolerance. Thus, the final solution is obtained when the following condition occurs

$$
\begin{equation*}
\frac{/(1-x) W_{T}-W_{L} /}{(1-x) W_{T}} \leq \text { Tolerance } 1 \tag{6}
\end{equation*}
$$

where Tolerance l is a program input item.

However, if the calculated liquid flow rate from this first try is not within the specified tolerance, the program will resort to the use of a false-position subroutine in order to rapidly zero in on a value of liquid fraction which matches the input liquid flow rate (l-x) W_{T}.

The false-position subroutine requires two values of liquid fraction which bracket the root. That is, one value of R_{L} must, when used in Equations (1) through (5), yield a value of liquid flow rate which is less than the input liquid flow rate. Another value of R_{L} must provide a liquid flow rate greater than the input value. The initial guess of R_{L} provides one of these values. If the liquid flow rate obtained using the initial guess of liquid fraction $R_{L i}$ is greater than the input liquid flow rate, the program chooses a new value of liquid fraction equal to onehalf the initial guess. If the liquid flow rate obtained using $\frac{R_{L i}}{2}$ is less than the input liquid flow rate, the brackets needed for the false-position subroutine are obtained. If the liquid flow rate obtained using $\frac{R_{L i}}{2}$ is greater than the input liquid flow rate, the program calculates liquid flow rate using $\frac{R_{L_{i}}}{4}, \frac{R_{L_{i}}}{8}, \frac{R_{L_{i}}}{16}$, etc., until a value of liquid fraction for which the calculated liquid flow rate is less than $(1-x) W_{T}$ is obtained.

If the liquid flow rate obtained using the initial value of liquid fraction is less than the input liquid flow rate, the program chooses a new value of liquid fraction equal to twice the initial value if $R_{L_{i}}$ is less than 0.3333 , or $\frac{1.0+R_{L i}}{2}$ if $R_{L_{i}}$ is greater than or equal to 0.3333 . If this second value of R_{L} fails to provide the upper bracket, then another value of R_{L} is tried by a similar routine until the two bracketing values of liquid fraction are obtained.

The logic of the false-position subroutine used to find the value of liquid friction that matches the input liquid flow rate is described in Appendix B.

After convergence of liquid flow rate is achieved, the program calculates the ratio of eddy diffusivities $\quad \alpha$ at each of the selected radial locations, using the following equation

$$
\begin{equation*}
\alpha=\exp \left[\frac{- \text { Alpha Constant } 1}{\left[\frac{\epsilon_{M}}{\nu_{L}}\right]}\right] \tag{7}
\end{equation*}
$$

Recommended values for the constants in Equation (7) are
Alpha Constant $1=2.0$
Alpha Constant $2=0.5$
After evaluating the ratio of eddy diffusivities the program calculates the temperature profile from the following equation

$$
t^{+}=\int_{0}^{y^{+}} \frac{q / q_{0}}{\frac{1}{P_{r_{L}}}+\alpha \frac{\epsilon_{M}}{\nu_{L}}} d y^{+}
$$

where

$$
\frac{q}{q_{0}}=\frac{1}{1-\left(\frac{y^{+}}{r_{0}^{+}}\right)}
$$

Once t^{+}is evaluated at δ^{+}, the condensing-heat-transfer coefficient is calculated from the following equation

$$
\begin{equation*}
h_{f i l m}=\frac{q_{o}}{T_{v}-T_{o}}=\frac{C_{p_{L}} \rho_{L} V^{*}}{t_{\text {at } y^{+}=\delta^{+}}^{+}} \tag{9}
\end{equation*}
$$

This coefficient $h_{\text {film }}$ involves only the temperature difference due to the thermal resistance of the liquid film. If liquid-vapor interfacial resistance is present, the program calculates an interfacial resistance coefficient and an overall condensing-heat-transfer coefficient, using the following equations

$$
\begin{align*}
& \mathrm{h}_{\text {interface }}=\left(\frac{\sigma}{2-\sigma}\right)\left(\frac{2}{\pi}\right)^{1 / 2}\left(\frac{\mathrm{M}}{\mathrm{R}}\right)^{3 / 2} \frac{\mathrm{P}_{\mathrm{B} a t} \lambda^{2}}{\left(\mathrm{t}_{\mathrm{v}}\right)^{5 / 2}} \mathrm{~g}_{\mathrm{c}}^{1 / 2} \mathrm{~J} \tag{10}\\
& \mathrm{~h}=\frac{1}{\frac{1}{\mathrm{~h}_{\text {film }}}+\frac{1}{h_{\text {interface }}}\left(\frac{\mathrm{r}_{\mathrm{o}}^{+}-\delta^{+}}{\mathrm{r}_{\mathrm{o}}^{+}}\right)} \tag{11}
\end{align*}
$$

If a value of zero is input for sigma (σ) the program bypasses the liquid-vapor interfacial resistance calculation. As a result $h=h_{\text {film }}$.

III. INPUT INSTRUCTIONS

A. Instructions for First Case

Enter the cards in the following order:

1. Title Card

Enter title in Columns 2 through 72

2. Control Card

The outline below shows the field locations of the various items used to control the program

12		4	5	6	7
			足		号

All items must be entered as fixed-point right-adjusted numbers.

Symbol
N

ICHANG

IEMNU

Column
$1 \rightarrow 3$

4 and 5

6 and 7

Instruction
Enter the number of double intervals used in the calculations (maximum number for $\mathrm{N}=499$)

Enter zero (0). This instructs the machine that a master case is being loaded.

Enter one (1) in Column 7 to use Option 1. Enter two (2) in Column 7 to use Option 2. See Page 4 for description of Options.
3. Data Cards

Five data cards are entered with the format shown below. (Definitions and units are listed in Table 2, Appendix C). All data input
must be entered in floating-point mode within the field widths indicated.

Field Width	1-14	15-28	29-42	43-56	57-70
Card No. 1	T'Sat	P'Sat	Tube Radius	Total Flow	Quality
Card No. 2	Heat Flux	DP/DL Friction	G Field	Cosine Theta	Viscosity (L)
Card No. 3	Viscosity (V)	Specific Heat (L)	Latent Heat	Thermal Cond. (L)	Density (L)
Card No. 4	Density (V)	Mole Weight	Sigma	Alpha Constant 1	Alpha Constant 2
Card No. 5	Tolerance	Toleranc	2		

B. Instructions for Each Succeeding Case

The following procedure should be used if it is desired to run more than one case in a loading when only a few input items are to be changed from the preceding case.

Load cards immediately behind the preceding case in the following order:

1. Title Card

Enter 1 in Column 1
Enter title in Columns 2 through 72

2. Control Card

N Enter one-half the number of double intervals used in the calculations (maximum number for $\mathrm{N}=499$).

ICHANG Enter one (1) in Column 5. This instructs the machine that one or more input items from the previous case will be changed.

IEMNU Enter one (1) in Column 7 to use Option 1. Enter two (2) in Column 7 to use Option 2. See Page 4 for description of options.

3. Input Change Cards

For each input item on data cards to be changed from the preceding case, enter a card with the input as follows:
a. Columns (1 and 2) - Identification number of variable to be changed (see Table 2). Identification number must be entered as a fixed-point right-adjusted number.
b. Columns (3 through 16) - New value of input item in floatingpoint mode.
4. Blank Card
C. Instructions to End Deck

After the last case input, insert two blank cards.

IV. PRINTOUT FORMAT

A sample of the printout format of the program is shown in Table 3. The information contained in this format is arranged in four blocks which appear in the following order:

Block 1

Block l is a tabulation of the input data. Symbols, definitions, and units for the input data appear in Table 2.

Block 2
Block 2 is a tabulation of values of the radially-independent output items. Symbols, definitions, and units of these items appear in Table 4.

Block 3
Block 3 is a tabulation of values of the radially-dependent output items. Symbols, definitions, and units of these items appear in Table 5.

Block 4
Block 4 is a tabulation of the values of liquid flow rate and liquid fraction R_{L} used in the iteration routine to obtain the final solution.

If a set of conditions are entered so that an unrealistic answer results, or convergence upon an answer is impossible, an error printout will result. See Section V for an explanation of error printouts.

V. ERROR PRINTOUTS

In the event that unusual flow conditions exist or the computer cannot find a liquid flow rate that will satisfy the program equations, an error printout will occur.

Error printouts occur if:

1) The program cannot converge on the proper liquid flow rate $W_{\text {liquid calculated }} \neq(1-x) W_{T}$
2) Negative liquid velocities occur
3) Negative shear stresses occur
4) The calculated value of the Lockhart-Martinelli liquid fraction is greater than or equal to one.
5) The calculated value of the Lockhart-Martinelli liquid fraction is less than or equal to zero.

If Item 1 is the reason for the error printout, the following statement will be printed. "The method of false position failed to iterate". The answers that will be printed are from the last pass through the iteration and are not valid.

If the reason for the error printout is Item 2, the following statement will be printed. "Valid solution not obtained -- negative liquid velocities occur".

If the reason for the error printout is Item 3, the following statement will be printed. "Note: Negative shear stresses occurred".

In the event that Item 4 or 5 is the reason for the error printout, the program will terminate without returning any answers other than listing the input (Block 1). These errors are possible only if an error is made in the program input.

APPENDIX A

Simpson's Rule Integ ration

APPENDIX A

Simpson's Rule Integration

All integration within the program is performed with the aid of Simpson's rule. Simpson's rule provides a rapid method for integrating functions with a high degree of accuracy. It assumes that each section of a function to be integrated can be approximated by a parabola through its ends and midpoint.

The sketch below shows three points of function with a parabolic arc drawn through them. Thus

$$
\begin{equation*}
\mathrm{Z}=\mathrm{Ay}^{2}+\mathrm{By}+\mathrm{f}(\mathrm{y})=\mathrm{A} \mathrm{y}^{2}+\mathrm{By}+\mathrm{C} \tag{Al}
\end{equation*}
$$

Figure Al
At the midpoint of the double interval shown in the sketch $y=0$ and $Z=Z_{2}$

Substituting these values into Equation (Al) and solving for C

$$
\begin{equation*}
\mathrm{C}=\mathrm{Z}_{2} \tag{A2}
\end{equation*}
$$

thus

$$
\begin{equation*}
Z=A y^{2}+B y+Z_{2} \tag{A3}
\end{equation*}
$$

At the left end point $y=-h$ and $Z=Z_{l}$
Substituting these values into Equation (A3) gives

$$
\begin{equation*}
\mathrm{Z}_{1}=A \mathrm{~h}^{2}-\mathrm{Bh}+\mathrm{Z}_{2} \tag{A4}
\end{equation*}
$$

At the right end point $y=+h$ and $Z=Z_{3}$
Substituting these values into Equation (A3) gives

$$
\begin{equation*}
Z_{3}=A h^{2}+B h+Z_{2} \tag{A6}
\end{equation*}
$$

Adding Equations (A4) and (A6) and solving for $A h^{2}$

$$
\begin{equation*}
A h^{2}=\frac{Z_{1}+Z_{3}}{2}-Z_{2} \tag{A7}
\end{equation*}
$$

Subtracting Equation (A4) from Equation (A5) yields

$$
\begin{equation*}
\mathrm{Bh}=\frac{\mathrm{Z}_{3}-\mathrm{Z}_{1}}{2} \tag{A8}
\end{equation*}
$$

Integrating Equation (Al) between limits of $y_{1}=-h$ and $y_{2}=0$ gives
$\begin{aligned} & \text { Area of } \\ & \text { Increment } I \\ & \text { (Figure Al) }\end{aligned}=\iint_{y_{1}=-h}^{y_{2}=0} \quad f(y) d y=h\left(\frac{A h^{2}}{3}-\frac{B h}{2}+C\right)$

Similarly

$$
\begin{align*}
& \text { Area of } \tag{Al0}\\
& \text { Increment II } \\
& \text { (Figure Al) }
\end{align*}=\int_{y_{2}=0}^{y_{3}=h} f(y) d y=h\left(\frac{A h^{2}}{3}+\frac{B h}{2}+C\right)
$$

Substituting Equations (A2), (A7) and (A8) into Equations (A9) and (A10)

$$
\begin{align*}
& \int_{-h}^{o} f(y) d y=\frac{h}{12}\left(5 Z_{1}+8 Z_{2}-Z_{3}\right) \tag{All}\\
& \int^{h} f(y) d y=\frac{h}{12}\left(-Z_{1}+8 Z_{2}+5 Z_{3}\right) \tag{Al2}
\end{align*}
$$

These last two equations provide the integrals of two increments of a function in terms of values of the function at the increment end points.

Equations (All) and (A12) are the forms of Simpson's rule used throughout the program.

The smaller the width of the increment, the greater will be the accuracy of the approximation. The program can accept up to 499 double intervals ($\mathrm{N}=499$) and hence 998 increments. However, in few instances will it be necessary to use that many increments.

APPENDIX B

Method of False Position

APPENDIX B

Method of False Position

The principle of false position provides a rapid method for solving iterative problems. The computer program uses a false-position subroutine to obtain a value of liquid fraction R_{L} corresponding to the input value of liquid flow rate ($1-\mathrm{x}$) W_{T}. The false-position subroutine requires

1) the function to be evaluated be a monotonic function, and
2) values of liquid fraction with corresponding liquid flow rates that bracket the desired root.

The method of false position can be explained with the aid of Figures Bl through B4. Assume that Figure Bl shows the true relationship between liquid flow rate and liquid fraction.

Figure Bl
Figure B2
In Figure B2, $R_{L_{1}}$ and $R_{L_{2}}$ correspond to the values of liquid fraction known to bracket the correct answer (see page 6 for a discussion of the method used to bracket the correct answer). The program determines where a straight line through Points 1 and 2 intersects the horizontal line $W_{L}=(1-x) W_{T}$. This point corresponds to a new guessed value for R_{L} (namely $\mathrm{R}_{\mathrm{L}_{3}}$).

Using Equations (1) through (5) of Section IV, the program calculates the value of liquid flow rate corresponding to $\mathrm{R}_{\mathrm{L}_{3}}$, which is $\mathrm{W}_{\mathrm{L}_{4}}$ (Point 4) on Figure B3. Straight lines are then determined between Points 1 and 4 and Points 2 and 4, intersecting $W_{L}=(1-x) W_{T}$ at Points 5 and 6. respectively. $\mathrm{R}_{\mathrm{L}_{5}}$ and $\mathrm{R}_{\mathrm{L}_{6}}$ bracket the solution.

Figure B3

The program then selects the two values of R_{L} which provide bracketing liquid flows closest to the true liquid flow rate, and uses them as the new brackets (in this case, $R_{L_{1}}$ and $R_{L_{5}}$) to continue the process.

After each process, the program checks to see whether or not the difference between the R_{L} brackets is within a specified tolerance. It checks if $\frac{/ R_{L_{5}}-R_{L_{1}} /}{/ R_{L_{5}}+R_{L_{1}} /}$ is less than, greater than, or equal to Tolerance 2 where Tolerance 2 is a program input item.
a) If $\frac{/ R_{L_{5}}-R_{L_{1}} \mid}{\left|R_{L_{5}}+R_{L_{1}}\right|} \leq$ Tolerance 2, the program picks a new value
of liquid fraction $R_{L_{7}}=\frac{R_{L_{5}}+R_{L_{1}}}{2}$ and evaluates a corresponding liquid flow rate $\mathrm{W}_{\mathrm{L}} 7$ on Figure B 4 .

Figure B4
The program then checks whether or not $W_{L_{7}}$ matches (1-x) W_{T} within a specified tolerance.
It checks if $\frac{/ W_{L_{7}}-(1-x) W_{T} /}{(1-x) W_{T}}$ is less than, greater than, or equal to

Tolerance 1.

where Tolerance l is a program input item.
If $\frac{/ W_{L_{7}}-(1-x) W_{T} /}{(1-x) W_{T}} \leq$ Tolerance 1 ,
convergence on liquid flow rate is attained, and the velocity profile and film thickness corresponding to $W_{L}{ }_{7}$ and $R_{L / 7}$ are the final answers.
If $\frac{/ W_{L_{7}}-(1-x) W_{T} /}{(1-x) W_{T}}>$ Tolerance 1 ,
the program decreases Tolerance 2 by a factor of 10 and repeats the iteration process using $R_{L_{1}}$ and $R_{L_{5}}$ as the left and right brackets respectively.
b) If $\frac{/ R_{L_{5}}-R_{L_{1}} /}{R_{L_{5}}+R_{L_{1}}}>$ Tolerance 2,
the program repeats the iteration process using $R_{L_{1}}$ and $R_{L_{5}}$ as the left and right brackets. If there is no convergence upon liquid fraction and liquid flow rate after 30 iterations, the program prints out the last calculated values of liquid fraction and liquid flow rate along with an error printout stating that the method of false position failed to iterate. If this happens, it is probably due to an input error.

APPENDIX C

Tables

Nomenclature

Symbol
Alpha Constant 1
Alpha Constant 2
Cp
$\mathrm{dp} / \mathrm{d} \ell$
g
gc
h
$\mathrm{h}_{\text {film }}$
h interface
J
M
N
$\mathrm{P}_{\text {sat }}$
Pr
q
R
R_{L}
r_{o}
$\mathrm{r}_{\mathrm{O}}{ }^{+}$
T_{0}
T_{v}
t_{v}
t^{+}
Tolerance 1
Tolerance 2
u^{+}
V *
$\mathrm{W}_{\text {L }}$
$W_{\text {T }}$

TABLE 1 (Cont'd.)

X	Lockhart-Martinelli two-phase flow parameter	--
\mathbf{x}	$\text { fluid quality }=\frac{\mathrm{W}_{\mathrm{g}}}{\mathrm{~W}_{\mathrm{T}}}$	--
y	distance measured from wall	ft
y^{+}	dimensionless distance measured from wall	--
α	ratio of eddy diffusivity of heat to eddy diffusivity of momentum	--
δ^{+}	dimensionless thickness of liquid film	
ϵ_{M}	eddy diffusivity of momentum	$\mathrm{ft}^{2} / \mathrm{hr}$
θ	angle of tube orientation measured from vertically upward	
λ	latent heat of vaporization	Btu/ $1 \mathrm{~b}_{\mathrm{m}}$
ν	kinematic viscosity	$\mathrm{ft}^{2} / \mathrm{hr}$
ρ	density	$1 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{3}$
σ	condensation coefficient, see Equation (10)	
τ	shear stress	$1 b_{f} / \mathrm{ft}^{2}$
	Subscripts	
Symbol	Definition	
g	refers to vapor	
i	refers to initial guess	
L	refers to liquid	
-	refers to conditions at the wall	

TABLE 2
Input Data
Variable
Identification
Number
Symbol

1
2
3
4
5
6
7
8

P'Sat
Tube Radius
Total Flow
Quality
Heat Flux
DP/DL
Friction
G Field
Cosine Theta
Viscosity (L) liquid dynamic viscosity,

Specific Heat liquid specific heat
(L) (L)

Density (L)
Density (V) vapor density
Mole Weight
Sigma
condensation coefficient appearing in Equation(10)
Alpha Constant 1
Alpha Constant 2
Tolerance 1
Tolerance 2 tolerance on liquid fraction (see Appendix B)

T'Sat fluid saturation temperature μ_{L}
$\mathrm{lb}_{\mathrm{m}} / \mathrm{hrft}$
Viscosity (V) vapor dynamic viscosity, μ_{g}

Latent Heat latent heat of vaporization
Thermal Cond liquid thermal conductivity
liquid density
fluid molecular weight
Units
${ }^{\bullet} \mathrm{F}$
$\mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2}$
ft
$\mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$
$\mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2}$
$1 b_{f} / f t^{3}$
gravity field (g/gc)
cosine θ (θ measured from vertically upward axis)

$$
\sin
$$

$1 b_{\mathrm{m}} / \mathrm{hrft}$
Btu/lbm ${ }^{\circ} \mathrm{F}$
Btu $/ \mathrm{lb}_{\mathrm{m}}$
$\mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{\bullet} \mathrm{F}$
$1 \mathrm{~b} \mathrm{~m} / \mathrm{ft}^{3}$
1 b m $/ \mathrm{ft}^{3}$
$1 b_{m} / l b-m o l e$

QUALITY
$0.91200 E$ OO

THERMAL COND（L）
$0.39500 E-00$

$20-352958 \cdot 0$
（כר7 ער） （W）I JH＝H）（VM．I
0.21012 E 03

E0 300622•0
（dVA．WOW）70／do ع0 326てzて・0－

CALC LIQUID FLOW
0
0
u
\vdots
0
0
0
0
0

P／OL（MOMPLIO）
$0.17271 E 01$ RL（L＇M）
$0.82006 E-02$

$\bullet 0$
1ヨコロ」とヨINI dVA．OITIH

$$
\begin{gathered}
\text { DP/DL(HEAD) } \\
-0.55937 E 00 \\
V \text { (STAR) } \\
0.28144 E 04
\end{gathered}
$$

qnoquịd oldures
ε rTg甘L

HIFILM）
$0.83166 E 04$
DP／DLIFRICTION）
$0.18460 E 03$
REYNOLDS NO（VAP）
$0.67129 E$ OS （017）ON SaาONAヨy 0.34163 E 03
 taustauo

甹

こ
コ
a
に

 \sim
0
1
0
0
0
0
0
0
0
0
0
0.0

TABLE 4

Radially-Independent Printout Items
Symbol Definition Units

Calc. Liquid Flow	liquid flow rate obtained using final value of liquid fraction in Equations (1) to (5)	$1 b_{m} / \mathrm{hr}$
DELTA (Plus)	dimensionless film thickness	
DP/DL (Friction)	*frictional pressure gradient	$\mathrm{lbf} / \mathrm{ft}{ }^{3}$
DP/DL (Head)	*pressure gradient due to static head	$1 b_{f} / \mathrm{ft}^{3}$
DP/DL (Mom)	*static pressure gradient due to liquid and vapor momentum	$\mathrm{lb}_{\mathrm{f}} / \mathrm{ft} 3$
DP/DL (Mom'Liq)	*static pressure gradient due to liquid momentum	$\mathrm{lb}_{\mathrm{f}} / \mathrm{ft}{ }^{3}$
DP/DL (Mom'Vap)	*static pressure gradient due to vapor momentum	$1 b_{f} / \mathrm{ft}^{3}$
DP/DL (Total	*static pressure gradient due to friction, static head, and momentum	$1 b_{f} / \mathrm{ft}^{3}$
Film Thickness	film thickness	ft
H (Film)	heat transfer coefficient based on liquid layer resistance	$\mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2} \cdot \mathrm{~F}$
H (Overall)	overall heat transfer coefficient, see Equation (11)	$\mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2} \cdot \mathrm{~F}$
H (Liq'Vap Interface)	heat transfer coefficient due to interfacial resistance, see Equation (10)	$\mathrm{Btu} / \mathrm{hr} \mathrm{ft}{ }^{2} \cdot \mathrm{~F}$
Reynolds No. (Liq)	full bore liquid Reynolds number $\frac{2 W_{L}}{\pi r_{O} \mu_{L}}$	--
Reynolds No. (Vap)	full bore vapor Reynolds number $\frac{2 \times W_{T}}{\pi r_{O} \mu_{g}}$	--
RL (Calc)	final value of liquid fraction	--
RL (L^{\prime} M)	liquid fraction obtained from LockhartMartinelli correlation	--

[^1]TABLE 4 (Cont'd.)

T'INTERFACE	*liquid temperature at liquid-vapor interface	${ }^{\text {F }}$
T'WALL	wall temperature in presence of interfacial resistance	${ }^{\bullet} \mathrm{F}$
T'WALL ($\mathrm{H}=\mathrm{H}$ Film)	wall temperature when interfacial resistance is neglected	$\bullet \mathrm{F}$
V (STAR)	friction velocity $=\sqrt{\tau_{\text {O }} \mathrm{gc}^{\prime} \rho_{\mathrm{L}}}$	$\mathrm{ft} / \mathrm{hr}$

* When no liquid-vapor interfacial resistance is considered, the temperature at the liquid vapor interface is the saturation temperature

TABLE 5

Radially-Dependent Printout Items

Symbol

Alpha

Epsilon M/NU
Tau/Tauo
T (Plus)
U (Plus)
Y
Y (Plus)
Y/RO

Definition
Units
ratio of eddy diffusivity of heat to eddy diffusivity of momentum, $\left(\epsilon_{\mathrm{H}} / \epsilon_{\mathrm{M}}\right.$)
ratio of eddy diffusivity of momentum to liquid kinematic viscosity, $\left(\epsilon_{M} / \nu_{L}\right)$ ratio of local shear stress to shear stress at wall, (τ / τ_{0})
dimensionless temperature, t^{+}--
dimensionless velocity, u^{+}
distance from wall, $y \quad f t$
dimensionless distance measured from wall, y^{+}
ratio of distance measured from wall to tube inner radius, y / r_{o}

APPENDIX D List of Computer Statements

501 READ INPUT TAPE MM.5C2.HOLL
READ INPUT TAPE MM, 503.N.ICHANG. IEMNU
IF (N) 2000.2000.507
504 READ INPUT TAPE MM. 508 .I. TEMPER
505 READ INPUT TAPE MM. 505 (IDLK(I). I $=1.22$)
GO TO 510
507 IF (ICHANG) 504.505 .504

$$
\begin{aligned}
& 507 \text { IF (ICHANG) } 504 \cdot 505 \cdot 504 \\
& 509 \text { BLK } 1 \text {) }=\text { TEMPER }
\end{aligned}
$$

 WRITE OUTPUT TAPE NN,S12,(BLK(1):1=1,14) WRITE OUTPUT TAPE NN.513.(BLK(1), $1=15,22)$ DO $514, \mathrm{I}=1.20$ ANS(I) $=0.0$
NOIT $=0$ $G C=32 \cdot 17405$ $G C H=G C * 1 \cdot 296 E 7$ 36

$$
\begin{aligned}
& 3600 \cdot \\
& 3.14159265
\end{aligned}
$$

$C=$
$I=$
514

$$
\begin{aligned}
& =\text { DPDLFR } \\
& =V I S C L * C
\end{aligned}
$$

$$
\begin{aligned}
& =V I S C L * C P L / Z K L \\
& =W T O T *(1 \cdot \cup-X)
\end{aligned}
$$

$$
\begin{aligned}
& =W T O T *(\\
& =W T O T * X
\end{aligned}
$$

$\checkmark N \underset{N}{N}$ ナ $\cap \infty \quad \infty$
00
$\begin{array}{ll}0 & \infty \\ 0 & 0 \\ - & -\end{array}$
109
101

0254
0255
0255
0257
0258
0259
0260
0261
0252
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
号号号只 RL $=V L$
$I E M N U=I E M N U$
$V D K=0.4$
$A P L U S=26$.
$I F(R L) 100.100$
$W L=0.0$
$G O T O 3$
$I F(R L-1.0)$
$R L=.9999$
\rightarrow～M

$$
\begin{aligned}
& \circ \\
& \hline \\
& \hline
\end{aligned}
$$

1

FYPL(I) $=$ TAURAT(I)GO TO 1	
250	EMNUL(I) $=$ •5*(-1. + SQRTF(1.0 + 4.0*TAURAT(1)*(VDK*YPL(1)*(1.0
1	EXPFF(-YPL(I)/APLUS)))**2))
	GO TO (410,420), IEMNU
420	1F (EMNUL (1) - EMNUL (1-1) 400.400 .410
400	EMNULM $=$ EMNUL $(\mathrm{I}-1)$
	EMNUL (I) = EMNULM
410	FYPL(1) = TAURAT(1)/(1.0 + EMNUL(!))
	CONTINUE
	UPL(1) $=0.0$
	GYPL(1) $=0.0$
	DO $2 \mathrm{I}=1 \mathrm{~N}$
	$J=2 * I$
	$J M=J-1$
	$J P=J+1$
	DLUPLL = DELYPL/12.*(5.0*FYPL(JM) + 8.0*FYPL(J) - FYPL(JP))
	DLUPLR = DELYPL/12.*(-FYPL (JM) + 8.0*FYDL (J) + 5.0*FYPL (JP))
	UPL(J) $=$ UPL(JM) + DLUPLL
	UPL(JP) $=$ UPL(J) + DLUPLR
	GYPL(J) $=$ UPL(J)*(ROPLUS - YPL (J))
	GYPL(JP) $=$ UPL(JP)*(ROPLUS - YPL(JP))
	$\operatorname{GYPL}(J)=\operatorname{ABSF}(G Y P L(J))$
	$\operatorname{GYPL}(J P)=\operatorname{ABSF}(G Y P L(J P))$
2	continue
	$W L=0.0$
	DO $3 \mathrm{I}=1, \mathrm{~N}$
	$M=2 * I$
	$M P=M+1$
	$M M=M-1$
	```DELWL = DELYPL/3.0*(GYPL(MM) + 4.O*GYPL(M) + GYPL(MP))*E WL = WL + DELWL```
3	continue
	FWFLOL $=W$ W
	$L=L+1$
	OWTL (L) = WL





 RETURN




125 WRITE OUTPUT TAPE NN. 1260XP•XPP,F1•F2 126 FORMAT ( $10 \times 46$ HTHE METHOD OF FALSE POSITION $112 \cdot 8 \cdot 4 H \times P P=F 12 \cdot 8 \cdot 3 H F 1=F 12 \cdot 8 \cdot 3 H F 2=F 12 \cdot 81$
$L=J$
$\begin{array}{rl}\text { RETURN } & =(X P *(F 2-R R)-X P P *(F 1-R R)) /(F 2-F 1) \\ 130 & X X \\ 135 & =X X \\ \text { FALSY } & =X X \\ 136 \text { YY } & =A X R(X X) \\ \text { GO TO } 140\end{array}$


## APPENDIX E

## Computer Flow Diagrams

Flow Diagram for Main Program


Flow Diagrams for Program Subroutines
Subroutine FWFLOL


Subroutine SDPDLM


Subroutine SRLLM



[^0]:    * Nomenclature is defined in Table l, Appendix C
    **Most of the equations presented in this section are derived in Report PWA-2530, NASA CR-54352, Analytical Study of Liquid Metal Condensing Inside Tubes, by H. R. Hunz.

[^1]:    * $\mathrm{dp} / \mathrm{dl}$ used here is the negative of the true pressure gradient and therefore a negative static pressure gradient indicates a pressure rise in the direction of flow

