6 research outputs found

    Identification of Motor Unit Twitch Properties in the Intact Human In Vivo

    Get PDF
    Restoring natural motor function in neurologically injured individuals is challenging, largely due to the lack of personalization in current neurorehabilitation technologies. Signal-driven neuro-musculoskeletal models may offer a novel paradigm for devising novel closed-loop rehabilitation strategies according to an individual's physiology. However, current modelling techniques are constrained to bipolar electromyography (EMG), thereby lacking the resolution necessary to extract the activity of individual motor units (MUs) in vivo. In this work, we decoded MU spike trains from high-density (HD)-EMG to obtain relevant neural properties across multiple isometric plantar-dorsiflexion tasks. Then, we sampled MU statistical distributions and used them to reproduce MU specific activation profiles. Results showed bimodal distributions which may correspond to slow and fast MU populations. The estimated activation profiles showed a high degree of similarity to the reference torque (R2>0.8) across the recorded muscles. This suggests that the estimation of MU twitch properties is a crucial step for the translation of neural information into muscle force.Clinical Relevance- This work has multiple implications for understanding the underlying mechanism of motor impairment and for developing closed-loop strategies for modulating alpha motor circuitries in neurologically injured individuals

    Longer-term effectiveness of a heterologous coronavirus disease 2019 (COVID-19) vaccine booster in healthcare workers in Brazil

    Get PDF
    Abstract Objective: To compare the long-term vaccine effectiveness between those receiving viral vector [Oxford-AstraZeneca (ChAdOx1)] or inactivated viral (CoronaVac) primary series (2 doses) and those who received an mRNA booster (Pfizer/BioNTech) (the third dose) among healthcare workers (HCWs). Methods: We conducted a retrospective cohort study among HCWs (aged ≥18 years) in Brazil from January 2021 to July 2022. To assess the variation in the effectiveness of booster dose over time, we estimated the effectiveness rate by taking the log risk ratio as a function of time. Results: Of 14,532 HCWs, coronavirus disease 2019 (COVID-19) was confirmed in 56.3% of HCWs receiving 2 doses of CoronaVac vaccine versus 23.2% of HCWs receiving 2 doses of CoronaVac vaccine with mRNA booster (P < .001), and 37.1% of HCWs receiving 2 doses of ChAdOx1 vaccine versus 22.7% among HCWs receiving 2 doses of ChAdOx1 vaccine with mRNA booster (P < .001). The highest vaccine effectiveness with mRNA booster was observed 30 days after vaccination: 91% for the CoronaVac vaccine group and 97% for the ChAdOx1 vaccine group. Vacine effectiveness declined to 55% and 67%, respectively, at 180 days. Of 430 samples screened for mutations, 49.5% were SARS-CoV-2 delta variants and 34.2% were SARS-CoV-2 omicron variants. Conclusions: Heterologous COVID-19 vaccines were effective for up to 180 days in preventing COVID-19 in the SARS-CoV-2 delta and omicron variant eras, which suggests the need for a second booster

    Person-Specific Biophysical Modeling of Alpha-Motoneuron Pools Driven by in vivo Decoded Neural Synaptic Input

    Get PDF
    Interfacing with alpha-motoneurons (MNs) is key to understand and control motor impairment and neurorehabilitation technologies. Depending on the neurophysiological condition of each individual, MN pools exhibit distinct neuro-anatomical properties and firing behaviors. Hence, the ability to assess subject-specific characteristics of MN pools is essential for unravelling the neural mechanisms and adaptations underlying motor control, both in healthy and impaired individuals. However, measuring in vivo the properties of complete human MN pools remains an open challenge. Therefore, this work proposes a novel approach based on decoding neural discharges from human MNs in vivo for driving the metaheuristic optimization of biophysically realistic MN models. First, we show that this framework provides subject-specific estimates of MN pool properties from the tibialis anterior muscle on five healthy individuals. Second, we propose a methodology to create complete pools of in silico MNs for each subject. Lastly, we show that neural-data driven complete in silico MN pools reproduce in vivo MN firing characteristics and muscle activation profiles during force-tracking tasks involving isometric ankle dorsi-flexion, at different levels of amplitude. This approach can open new avenues for understanding human neuro-mechanics and, particularly, MN pool dynamics, in a person-specific way. Thereby enabling the development of personalized neurorehabilitation and motor restoring technologies

    The Spinal Neurons Exhibitan ON-OFF and OFF-ON Firing Activity Around the Onset of Fictive Scratching Episodes in the Cat

    Get PDF
    In a previous report, we found neurons with ON-OFF and OFF-ON firing activity in the obex reticular formation during scratching. The aim of the present study was to examine whether the spinal neurons also exhibit this type of activity in relation to the "postural stage" of fictive scratching in the cat. We found that the extensor and intermediate scratching neurons exhibit an ON-OFF firing rate; conversely, the flexor neurons show an OFF-ON activity, relative to every scratching episode. These patterns of spiking activity are similar to those found in neurons from the obex reticular formation during scratching. Our findings provide support to the following hypotheses. First, there is a possible functional link between supraspinal and spinal, ON-OFF and OFF-ON neuronal groups. Second, the fictive goal-directed motor action to maintain the fictive "postural stage" of the hindlimb during fictive scratching is associated with the neuronal tonic activity of the OFF-ON spinal neurons, whereas the ON-OFF spinal neurons are associated with an extensor tone that occurred prior the postural stage
    corecore