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Characterization of Motor Unit Firing and Twitch
Properties for Decoding Musculoskeletal Force

in the Human Ankle Joint In Vivo
Antonio Gogeascoechea , Rafael Ornelas-Kobayashi , Utku S. Yavuz , and Massimo Sartori

Abstract— Understanding how motor units (MUs) con-
tribute to skeletal mechanical force is crucial for unraveling
the underlying mechanism of human movement. Alter-
ations in MU firing, contractile and force-generating prop-
erties emerge in response to physical training, aging or
injury. However, how changes in MU firing and twitch prop-
erties dictate skeletal muscle force generation in healthy
and impaired individuals remains an open question. In this
work, we present a MU-specific approach to identify firing
and twitch properties of MU samples and employ them to
decode musculoskeletal function in vivo. First, MU firing
events were decomposed offline from high-density elec-
tromyography (HD-EMG) of six lower leg muscles involved
in ankle plantar-dorsi flexion. We characterized their twitch
responses based on the statistical distributions of their fir-
ing properties and employed them to compute MU-specific
activation dynamics. Subsequently, we decoded ankle joint
moments by linking our framework to a subject-specific
musculoskeletal model. We validated our approach at
different ankle positions and levels of activation and com-
pared it with traditional EMG-driven models. Our proposed
MU-specific formulation achieves higher generalization
across conditions than the EMG-driven models, with signif-
icantly lower coefficients of variation in torque predictions.
Furthermore, our approach shows distinct neural strate-
gies across a large repertoire of contractile conditions in
different muscles. Our proposed approach may open new
avenues for characterizing the relationship between MU
firing and twitch properties and their influence on force
capacity. This can facilitate the development of targeted
rehabilitation strategies tailored to individuals with specific
neuromuscular conditions.

Index Terms— Neuro-musculoskeletal modeling, high-
density electromyography, motor unit, neuromechanics.
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I. INTRODUCTION

HUMAN movement is orchestrated by the coordinated
interaction of the central nervous system (CNS) and the

musculoskeletal system. The smallest incremental unit that the
CNS uses to control musculoskeletal force is the motor unit
(MU) [1], which consists of an alpha motor neuron (MN) and
the muscle fibers it innervates. Despite extensive research on
both alpha MNs and the innervated skeletal fibers, there are
still gaps in the understanding of how MN function is trans-
duced into skeletal mechanical force [2]. An important element
hampering progress is the limited understanding of how differ-
ences in MU’s firing and twitch contractile properties impact
musculoskeletal force generation in intact humans in vivo.
Such differences are demarcated by the continuum spectrum of
MU phenotypes that directly dictate MU firing rate, contractile
speed, and rate of force generation [3]. In this context, the
impact of alterations in MU properties on skeletal muscle
force-generation capacity remains unclear. Transitions in MU
phenotypes, i.e., MU remodeling, can arise from different
factors such as aging [4], injury [5], and exercise training [4].
For example, transitions towards smaller, slower MUs have
been reported due to the loss of larger MUs in elderly
humans [4], resulting in a decline in functional capacity.
Skeletal muscle training can help attenuate these age-related
alterations by facilitating reinnervation [4], increasing MU
size (hypertrophy) [4], decreasing recruitment thresholds [6]
and increasing discharge rates [6]. Thus, understanding how
different MU types and their associated properties influence
motor function is central for designing personalized training
programs and neuro-rehabilitation treatments.

An established way to non-invasively study MUs in humans
in vivo is based on the use of high-density electromyograms
(HD-EMGs) in combination with blind-source separation [7],
[8], which can capture the concurrent activity of multiple
MUs. Interfacing with MUs in vivo provides valuable insights
into healthy [9] and pathological [10], [11] neural patterns
under different conditions (e.g. nerve or spinal electrical
stimulation [12], [13]). Moreover, this enables the longitu-
dinal tracking of MU adaptations resulting from exercise
training (e.g., endurance [14] and strength [6]). Nonetheless,
relying solely on HD-EMG decomposition is insufficient
to establish causal associations between MU properties and
musculoskeletal force.
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In contrast, mechanistic, numerical models of the com-
posite neuro-musculoskeletal system could potentially reveal
causalities between measured neural activity (e.g., spinal MN
firing patterns) and resulting mechanical force generated in
innervated skeletal muscle-tendon units, as well as moments
in biological joints. This is critical for studying and testing
specific hypotheses underlying the neuro-mechanics of skeletal
muscle contraction and multi-joint motor control [15], [16].

In particular, EMG-driven musculoskeletal modeling frame-
works [18], [20] are becoming widely-used computational
methods for simulating the mechanics of the human mus-
culoskeletal system as controlled by neural surrogates, i.e.
EMG-derived neural activations. However, global EMGs can
be constrained by intrinsic limitations, including action poten-
tial amplitude cancellation [21] and the volume conductor
effect [22], which limit their association with the neural drive
to muscles [23] and subsequent force output [24]. Moreover,
established models driven by global EMGs cannot explain the
contribution of individual MUs. Therefore, these approaches
are unable to explain how the CNS controls muscle force
by modulating the number of MUs (i.e., recruitment coding)
and the rate at which each of them discharges an activation
signal (i.e., rate coding) in a person- and task-specific way.
This limits our ability to understand how individual MUs,
which produce millinewton-level forces, collectively generate
thousands of Newtons in a fraction of a second.

In this context, we propose a novel method to estimate
muscle force and joint moments by explicitly considering both
the firing and twitch properties of individual MUs experi-
mentally decoded in vivo. Although previous studies have
presented musculoskeletal models driven by spike trains, these
models were either derived from animal data or dissociated
from in vivo human MU firing activity [15]. More recently,
high-density EMG-driven modeling formulations were pro-
posed that utilized MU spike trains (i.e., firing function)
as the main drive of the model but disregarded the twitch
dynamics of each MU [20], [25], [26]. These formulations
would not enable investigating how alteration in individual
MU firing and contractile behavior (e.g., in response to aging,
injury, or training) affects skeletal muscle force generation,
thereby hampering the development of personalized training
procedures. Thus, by ignoring the mechanical differences
between MUs and assuming they have the same force pro-
duction capabilities, these models may overlook important
aspects of neuro-motor control, thereby limiting our ability to
accurately predict and understand movement and pathological
patterns.

In this study, we address the limitations of state-of-the-
art methodologies in dictating how MU firing and twitch
properties affect force generation in a person- and multi-
muscle-specific manner. First, we employ MU statistical
distributions of firing properties to estimate individual MU
twitch responses. Second, we use the twitch responses to
generate MU-specific activation dynamics. Third, we integrate
our proposed framework with person-specific musculoskele-
tal models [18], [19] to predict joint moments. By these
means, our methodology may open new directions to study
longitudinal changes in MU phenotype due to aging, injury,
or training.

II. METHODS

A. Data Collection
Kinematic, kinetic, and HD-EMG data were recorded from

four healthy individuals (male, age: 30 ± 1.9 years, weight:
68.3±1.3 kg; height: 184±2.1 cm) [20]. The experimental
procedures were approved by the University Medical Center
Göttingen (Ethikkommission der Universittsmedizin Göttin-
gen, approval number 01/10/12).

To determine hip, knee, and ankle joint centers of rota-
tion, we recorded motion capture data and ground reaction
forces synchronously using a seven-camera system (Qualisys,
Göteborg, Sweden, 256 Hz) and a force plate (Bertec Co.,
Columbus, OH, USA, 2048 Hz). We placed 18 retro-reflective
markers on each participant’s pelvis and right lower extremity.
Data were recorded during one static anatomical pose and a
set of functional trials and low-pass filtered with a fourth-order
Butterworth filter (cut-off frequency: 6 Hz).

We recorded ankle angular moments and positions using
a dynamometer (M3, Biodex Medical Systems Inc., Shirley,
NY, USA), synchronized with HD-EMGs from a 256-channel
amplifier (EMG-USB2, OT Bioelettronica, Torino, Italy, sam-
pled at 2048 Hz) during isometric plantar-dorsi flexion tasks.
Dynamometer data were filtered using a fourth-order low-
pass Butterworth filter with a cut-off frequency of 2 Hz.
HD-EMG data were measured from the right lower leg mus-
cles (Fig. 1.a): tibialis anterior (TA), soleus (SOL), medial
and lateral gastrocnemius (GM and GL), peroneus longus
(PL) and peroneus tertius (PT). Prior to electrode placement,
the skin was shaved and lightly abraded. Subsequently, the
electrode grids were placed on the skin using a 1-mm thick
double-adhesive foam and a conductive paste. For the TA,
SOL, and GM, 64-channel grids (10 mm inter-electrode
distance, 13 rows, and 5 columns) were used. For the GL
and peroneus group, 32-channel grids (10 mm inter-electrode
distance, 8 rows, and 4 columns) were used. The EMGs of the
peroneus group were split into PL (during plantar flexion) and
PT (during dorsiflexion). The reference electrode was placed
on the right malleolus. The HD-EMG signals were processed
to be decomposed into MN firing events (see Section II-D)
and for validation against linear envelopes. For decomposition,
the HD-EMGs were bandpass filtered with a second-order,
zero-lag Butterworth filter (cut-off frequency: 10-500 Hz).
To generate the envelopes, HD-EMGs were averaged across
all channels per muscle. Then, the resulting signals were
high-pass filtered (cut-off frequency: 30 Hz), fully rectified
and low-pass filtered (cut-off frequency: 20 HZ) with second-
order, zero-lag Butterworth filters. For each muscle and each
subject, the obtained envelopes were normalized with respect
to the maximum value obtained from the entire set of trials.

B. Experimental Protocol
Each isometric plantar-dorsi flexion task comprised four

repetitions of symmetric triangular moment profiles targeting
a percentage of maximum voluntary contraction (%MVC
at a known ankle position. The ankle positions were the
same for all subjects: anatomical, 10◦dorsi-, and 10◦plantar-
flexed. Regarding the MVC condition, three subjects followed
moment profiles from rest to 30, 50, 70, and 90 %, and back
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Fig. 1. Study overview. (a) Experimental set-up for ankle dorsi-plantar flexion tasks. Ankle joint moments and high-density electromyography
(HD-EMG) from the lower leg muscles are recorded. (b) HD-EMGs are decomposed into motor unit (MU) spike trains using a convolutive
blind-source separation (BSS) technique [7], [8]. The firing properties are calculated and employed to map MU twitch properties. (c) The estimated
twitch properties are used to design MU-specific twitch responses defined as an impulse of a second-order response system [17]. The convolution
between each jth spike train (u(t)) and its respective twitch response provides the MU-specific activation dynamics (a(t)). (d) Together with the ankle
joint angles, the MU-specific activation serves as input to a person-specific musculoskeletal framework [18], [19]. RT and DR: recruitment threshold
and normalized discharge rate, Ap and Tc twitch peak amplitude and contraction time, ch: channel, CE: contractile element, SEE: series elastic
element, PEE: parallel elastic element, LM

o : optimal fiber length, LT
s : tendon slack length, Fmax: max. isometric force.

Fig. 2. MU-specific neuro-musculoskeletal modeling framework: each muscle contains N decoded spike trains, each assigned to a twitch response
(contraction time, Tc, and peak amplitude, Ap) depending on their firing properties. The activation dynamics of a MU is the tetanic summation of
its respective individual twitches of a motor unit (MU). The musculotendon kinematics (musculotendon unit length (LMT) and moment arms (r))
and activation dynamics (a(t)) are inputs to a Hill-type muscle model, which estimates muscle-tendon force (FT) accounting for the force-length
(FM- L), force-velocity (FM- V), and tendon force-strain (FT- ϵ), relationships. The joint moment for each muscle m(t) is the multiplication between
muscle-tendon force and moment arms. The total joint moment M(t) is the summation of the moments produced by each contributing muscle. The
diagonal arrows indicate the parameter tuning for each subject.

to rest within 4 seconds (i.e., 2 seconds per ramp). These
tasks were designed in a way that the slopes of the ramps

were variable across MVC targets, i.e., the higher the moment
target, the higher the slope. Conversely, the fourth participant
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TABLE I
CONTRACTION TIMES FOUND ON HUMANS

followed moments with fixed slopes of 10% MVC/s across
different MVC conditions: 20, 30, 40, 50, and 60% MVC.
Namely, the duration of the ramps varied for this subject to
keep the slopes constant across conditions (ankle positions and
%MVC).

C. High-Density Electromyography Decomposition
The band-pass filtered HD-EMG signals were visually

inspected and poor-quality channels (i.e., exhibiting low
signal-to-noise ratio) were excluded from further analy-
sis. We then decomposed the HD-EMGs into MU spike
trains using a de-convolutive blind source separation tech-
nique [7]. Only MU spike trains with mean discharge
rates (see section II-D) falling between 3 and 40 Hz were
included. We assessed the quality of the decomposition using
the pulse-to-noise ratio (PNR) metric [31]. For the present
study, only MUs with PNR>26 dB were considered. The
identified MUs were further inspected by an experienced
operator who retained MUs with consistent discharge patterns.
Non-physiological discharges, i.e., with unusual inter-spike
intervals (<25 ms or >250 ms), were manually edited.

D. From Firing Behavior to Twitch Characteristics
1) Decoding Firing Properties: we estimated the recruitment

threshold and normalized mean discharge rate for each MU.
Recruitment threshold (RT ) was defined as the mean percent-
age of MVC around the first firing event (1):

RT j =
1
w

t1+ w
2∑

t=t1− w
2

m (t) , (1)

where w is a time window of 300 samples (∼150 ms) around
the first firing event (t1), and m(t) is the normalized joint
moment. The mean discharge rate was defined as the mean
inverse difference of the time intervals between consecutive
firing events (2):

DR j =
1

N − 1

N∑
i=2

1
t (i) − t ((i − 1)

, (2)

where t is the time of every i th discharge and N is the total
number of spikes in a single spike train. The mean discharge
rate was normalized to 40 Hz, as we did not observe discharge
rates above this value, and previously reported peak rates for
human MUs are typically below 50 Hz [2].

2) Decoding Twitch Characteristics: to estimate twitch pro-
files, we first employed the firing features for discriminating
a diverse continuum of MU types (Fig. 1.b). For this purpose,
we computed a linear combination of normalized firing prop-
erties (mean-centered) through principal component analysis
(using singular value decomposition). We obtained a com-
pound feature by projecting the data onto the first principal
component. As we sampled MUs in a broad range of force
levels (20-90 %MVC), this new compound feature enabled
the identification of a spectrum of MU types, ranging from
slow (low-threshold) to fast (high-threshold) MUs.

Subsequently, we mapped the compound feature into con-
tractile twitch characteristics based on Hennenman’s principle
of orderly recruitment [32] and extensively reported matching
correlations between MU firing and twitch properties [33],
[34], [35]. Namely, we employed the compound feature to
assign twitch properties from slow (long contraction times and
low peak amplitudes) to fast twitch responses (shorter con-
traction times and higher peak amplitudes). Although highly
flexible MU twitch models with multiple twitch parameters
have been proposed [16], [36], we previously found that
contraction time (or time-to-peak) and peak amplitude of a MU
twitch are sufficient to describe the activation dynamics accu-
rately, without compromising computational efficiency [37].
We computed a linear regression between minimum and
maximum values of the compound feature and the contraction
times intervals found in experiments on humans [27], [28],
[29], [30] (see Table I). In such manner, we assigned longer
contraction times to slow MUs and shorter contraction times to
fast MUs in a linearly continuous fashion. Similarly, we com-
puted a linear regression between the limits of the compound
feature and the normalized peak amplitudes (from 0 to 1),
thereby assigning lower amplitudes to slow MUs and higher
amplitudes to fast MUs.

Our proposed transformation from firing to twitch charac-
teristics is summarized by the following vectorial equation (3):

y = p1
[
DR − dr0 RT − rt0

] [
c1
c2

]
+ p2, (3)

where y is either of the twitch properties with its correspond-
ing PCA coefficients (c1 and c2) and center points (dr0 and
rt0), and its interpolation coefficients (p1 and p2) that take
into account the ranges found in literature (see Table I).

E. Motor Unit-Specific Activation Dynamics
We employed the contraction times and peak amplitudes

to design twitch models for each MU. Each twitch response
was computed as an impulse response of a second-order
system (4) [17]:

a j (t) =
Ac, j

Tc, j
t exp

1 − t
Tc, j

∗ u j (t), (4)

where a j is the activation of the j th MU, Ac the peak ampli-
tude, Tc the contraction time and u the excitation input, i.e.,
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a MU spike train. We discretized the system (as shown by [15])
to filter each spike train with its respective twitch model in
an online fashion, thereby obtaining the MU-specific activation
dynamics (Fig. 1.c). The sum of every MU contribution within
a muscle was defined as muscle activation (5):

aM (t) =

NR∑
j=1

a j (t), (5)

where NR is the total number of recruited MUs at a certain
contraction force level. However, we could only access a lim-
ited subset of MUs via surface HD-EMG decomposition (i.e.,
NR → ND , where ND is the number of decomposed MUs).
Thus, we accounted for the contribution of the unidentified
MUs using a parametric approach, i.e., by multiplying the
activation by the ratio between the total number of recruited
and decomposed MUs (NR/ND) as follows (6):

aM (t) ≈
NR

ND

ND∑
j=1

a j (t). (6)

This step is particularly important to match the increase in
activation and force amplitude, despite decomposing approx-
imately the same amount of MUs across MVC levels.
We estimated NR as the proportion of recruited MUs (rec)
multiplied by the total number of MUs (NT ) in the pool
(i.e., NR = NT rec). To describe the proportion of recruited
MUs (rec) as a function of % of MVC (i.e., % of force f ),
we adapted the exponential equation derived from experimen-
tal data of the TA (7) [38]:

rec( f ) =
log( f )

m
− 2.118, (7)

where m is a shape factor that dictates how fast the pool is
recruited. In this study, we assumed the same shape factor
(m = 0.045, derived from [38]) for all muscles, as comparable
recruitment curves have been found in different muscles (e.g.
TA and first dorsal interosseus in [38]). Thus, (6) can be
expressed as (8):

aM (t) ≈
rec( f ) NT

ND

ND∑
j=1

a j (t). (8)

As we integrated this formulation into a subject-specific
musculoskeletal framework [18], [19] that takes a normalized
activation (from 0 to 1) as input to compute angular moments
(Section II-F), we normalized (8) by dividing it by NT (9):

ãM (t) :=
rec( f )

ND

ND∑
j=1

a j (t). (9)

We finally further normalized the total activation dynamics by
the maximum activation found per subject.

F. Neuro-Musculoskeletal Modeling
We estimated ankle joint plantar-dorsi flexion angular

moments using two approaches: MU-specific (Fig. 2) and
conventional EMG-driven musculoskeletal models [18], [19],
[20]. The difference between these models lies in the way

Fig. 3. Translation from firing behavior to twitch contraction time (tibialis
anterior example). (a) Representation of projection of normalized data
onto the first principal component (non-centered for visual purposes).
Each point represents a sample of a motor unit (MU). (b) Histogram of
data projection normalized by probability density (PD) function estimate
(blue line). The red dashed lines correspond to different MU populations
(from slow to fast MUs). (c) Firing properties are mapped by linear
interpolation with corresponding twitch contraction times (Tc) found in
the literature (Table I). (d) Transformed distribution into twitch contraction
times (Tc). DR: discharge rate, a.u.: arbitrary unit).

activation dynamics were estimated. In the MU-specific frame-
work, muscle activation is computed directly from decoded
spike trains (Section II-E), while in the EMG-driven models,
it is computed as a linear envelope (Section II-A). The
musculotendon kinematics (i.e., musculotendon unit length
and moment arms) was computed via a family of B-spline
functions dependent on knee and ankle joint angles [19].
Musculotendon kinematics and activations were employed as
inputs to a Hill-type muscle model (contraction dynamics in
Fig. 2), which estimated muscle-tendon force (Fig. 1.d). Net
joint moments were computed by multiplying muscule-tendon
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TABLE II
DESCRIPTIVE STATISTICS OF FIRING AND TWITCH PROPERTIES

force by moment arms. The calibration tool adjusted muscu-
loskeletal parameters using a simulated annealing algorithm
to minimize the mean squared error sum between the pre-
dicted and reference moments. The calibrated parameters
were tendon slack length, optimal fiber length, and a scaling
coefficient of the maximum isometric force. The tendon slack
length and optimal fiber length were adjusted within ± 5%
of their initial value for fine-tuning muscle-tendon force-
length-velocity relationships. The initial values were linearly
scaled and pre-optimized [39]. The scaling coefficient of the
maximum isometric force varied within ( 1

2 ,2). We calibrated
these parameters using a single repetition from the 30% and
50% MVC conditions for the first three subjects, and from
the 20% and 40% of MVC conditions for the fourth subject
across all ankle positions.

G. Statistical Analysis
Normalized root mean squared error (RMSE) values were

calculated to compare the performance in moment predic-
tion between the MU-specific and EMG-driven models. The
normalization was done by the reference moment to have
comparable RMSE values across different levels of activation.
To check the variability of the predicted moments, the coeffi-
cient of variation (CoV) was computed for each model and for
the actual moment. We defined CoV as the standard deviation
of the detrended moments divided by the mean. We tested
statistical differences in RMSE and CoV between MU-specific
and EMG-driven predictions using non-parametric Wilcoxon
signed-rank tests. Median and interquartile ranges (IQR) were
calculated for the firing and twitch properties. Confidence
intervals (95%) of the medians were estimated using the
percentile bootstrap method (10,000 bootstrap samples).

III. RESULTS

A. Motor Unit Statistical Distributions
Fig. 4.a and Fig. 5.a show the MU distributions of the firing

properties (discharge rates and recruitment thresholds) and the
twitch characteristics (contraction times and peak amplitude)

Fig. 4. Firing Properties across muscles (a) and across levels of activa-
tion for the tibialis anterior (TA, b) and the soleus (SOL, c). The discharge
rates are displayed on the left and the recruitment threshold on the right.
GL, GM: lateral and medial gastrocnemius, PT, PL: peroneus tertius and
longus, MVC: maximum voluntary contraction, and a.u.: arbitrary unit.

TABLE III
NUMBER OF IDENTIFIED MUS PER MUSCLE ACROSS %MVC

across muscles. Table II summarizes the descriptive statistics
of these properties (median, its 95% CI, and IQRs).

Table III reports the number of identified MUs per muscle
across levels of activation. Fig. 4.b and 4.c show the discharge
rates and recruitment thresholds across % levels of activation
for the TA and the SOL, respectively. For the TA, both
firing properties exhibit a shift towards higher frequencies and
recruitment thresholds as the % level of activation increases.
For the SOL, the recruitment thresholds also exhibit a shift as
the % level of activation increases, however, a moderate mod-
ulation in discharge rate across activations. It is noteworthy to
mention that in this study, we observed no modulation of the
firing properties across ankle positions.
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Fig. 5. Twitch Properties across muscles (a) and across levels of acti-
vation for the tibialis anterior (TA, b) and the soleus (SOL, c). Contraction
times (reversed x-axis) are on the left and peak amplitudes on the right.
GL, GM: lateral and medial gastrocnemius, PT, PL: peroneus tertius and
longus, MVC: max. voluntary contraction, and a.u.: arbitrary unit.

TABLE IV
PCA COEFFICIENTS, PCA CENTER POINTS, AND INTERPOLATION

COEFFICIENTS OF CONTRACTION TIMES

Fig. 5.b and 5.c show the contraction times and peak
amplitudes across % levels of activation for the TA and for
the SOL, respectively. For both muscles, the MU distributions
exhibit a shift towards lower contraction times and higher peak
amplitudes as the level of activation increases. Similar to the
firing distributions, we observed no modulation of the twitch
properties across ankle positions.

Table IV shows the PCA coefficients, center points (dr0 and
r t0), and interpolation coefficients (p1 and p2) of contraction
times (Tc) for each muscle, i.e., the transformation coefficients
from firing to twitch properties. As we normalized the twitch
amplitudes, the interpolation coefficients for the peak ampli-
tude (Ac) for all muscles were p1 = 0.86 and p2 = 0.44.

B. Moment Prediction
We assessed the ability of our myoelectrically-driven mod-

els to predict accurate moments across joint angles (fiber
lengths) and multiple sub-maximal contractions. Fig. 6 depicts
the mean moment profiles across all conditions for each
myoelectrically-driven model and for the measured moment.
For each repetition, we evaluated the performance of our
framework with normalized RMSEs and CoV. Fig. 7 shows
these performance metrics in three ways: a jitter plot, a box-
plot, and probability density functions.

In terms of RMSE (Fig. 7.a), the performance of the
MU-specific model did not differ significantly from the
EMG-driven model (p > 0.05). Although the median
of the MU-specific framework is slightly higher than
the EMG-driven approach, the prediction errors of the
EMG-driven model displayed higher errors, ranging beyond
100% of normalized RMSE. For our proposed MU-specific
approach, a deeper analysis across activations shows that
the medians of the low activation trials (≤ 50% MVC)
were significantly lower than the higher activation trials.
On the other hand, the medians of the EMG-driven mod-
els did not display a specific trend. The lowest RMSEs
were within 40-50% MVC, followed by the 20-30% and
60-70% MVC with no statistical difference between them, and
lastly the 70-90 % MVC group with the highest RMSEs.

Regarding the variability of the predicted moments
(Fig. 7.b), the CoVs of the actual moments were significantly
smaller than the ones of both models (p < 0.001). Likewise,
the CoVs of the MU-specific model were significantly smaller
than the ones of the EMG-driven predictions (p < 0.001).
Across activations, the measured moments displayed higher
CoVs in the lowest range of activation (20-30% MVC) and
similar CoVs for higher % levels of activation (≥ 40% MVC).
The CoVs of the MU-specific model predictions were also the
highest for the lowest range of activation (20-30% MVC),
however, followed by the 90% MVC group, and then by
the 40-50% and 60-70% MVC ranges with no statistical
difference between them. The CoVs of the EMG-driven model
predictions were the highest for the lowest range of activation
(20-30% MVC), followed by the 40-50% MVC range, and
then by the 60-70% and 90% MVC groups with no statistical
difference between them.

IV. DISCUSSION

We presented a signal-driven model-based framework to
simultaneously identify MU firing and twitch properties as
well as muscle-tendon force-generating parameters. With this,
we reconstructed net moments at the ankle joint by taking into
account 6 lower leg muscles in 4 healthy individuals perform-
ing a large repertoire of plantar-dorsi flexion contractions. Our
approach differs from previous state-of-the-art methodologies,
which disregard the twitch dynamics of each specific MU [18],
[19], [20], [25], [26]. Instead, we formulated a MU-specific
model that captures the continuum diversity of MU firing and
twitch properties. This approach can open new avenues in
the future for tracking firing and twitch adaptations in MUs
with subsequent impact on force-generation capacity, due to
neuromuscular injuries [5] (e.g., stroke, spinal cord injury),
degenerative or autoimmune disorders [40] (e.g., Parkinson’s
disease, multiple sclerosis), or aging [4] (e.g., sarcopenia).
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Fig. 6. Mean moment profiles (dashed lines) and standard deviation (shaded area) across ankle positions (rows), and levels of activation (columns)
for each model (red and blue for the high-density electromyography (EMG) and the motor unit (MU)-specific models) and measured moment (yellow).

Importantly, future iterations of this technology can help track
training-induced neuromuscular remodeling for personalized
interventions.

Our methodology comprised four main elements (Fig. 1).
The first was an interface to decode the firing events of
MUs across multiple muscles (Fig. 1.a). This allowed the
calculation of statistical distributions of the firing proper-
ties of the sampled MUs. Second, we established a link
between MU firing and twitch properties (Fig. 1.b) to create
MU-specific activation dynamics for each muscle (Fig. 1.c).
Lastly, we coupled our framework with person-specific neuro-
musculoskeletal modeling [18], [19] (Fig. 1.d and Fig. 2).

Our proposed analysis of the resulting statistical distri-
butions revealed distinct firing and twitch characteristics
across the major muscles of the ankle (Fig. 4.a and Fig. 5.a)
and across different levels of sub-maximal contractions
(Fig. 4.b-c and Fig. 5.b-c), with consistent behavior across
ankle positions. Results showed that the SOL presented a tight
concentration towards low discharge rates and high contraction
times (Fig. 4.a, Fig. 5.a, and Table II). This effectively reflects
the MU composition of the SOL, as it is mainly constituted
by slow MU types [41]. Conversely, the rest of the muscles
exhibited more spread distributions (Fig. 5). This is well in
line with the more heterogeneous compositions of the TA,
GM, GL, and PL [41].

The major analyses of our work focused on TA and SOL
due to their greater sample size of decoded MUs, and thus
the better representation of the MU pool. This could be due
to the chosen motor task (plantar-dorsi flexion), as TA and
SOL are the primary dorsi and plantar flexors. Although the
gastrocnemii can greatly contribute to plantar flexion when the

knee is fully extended [42], [43], [44], [45], the selected knee
angle (120◦) decreased their engagement. Future work should
test whether a muscle-specific experimental design enables
replicating this methodology on the rest of the ankle muscles.

In this study, the SOL and the TA showed different strategies
of neuromuscular control across levels of activation (% of
MVC). Across levels of activation, distributions showed more
discharge rate modulation for TA than for SOL (Fig. 4.b).
In addition to the aforementioned difference in MU com-
position, this suggests dominance of recruitment coding for
SOL. As slow-twitch fibers can be tetanized with relatively
slow discharge rates [46], the SOL needs to progressively
recruit more MUs to achieve contraction strengths close to
MVCs [47]. Notably, MUs of the SOL exhibited larger mod-
ulation of contraction times than discharge rates (Fig. 5.b).
This may be due to the influence of the recruitment threshold
on the hereby proposed mapping to twitch properties. This
highlights the relevance of considering both firing features to
characterize MU phenotypes and contractile properties.

Across ankle positions (i.e., muscle lengths), decoded MU
populations showed similar distributions in discharge rates.
This is in line with recent studies [9], [48] where tracking
individual MUs revealed similar discharge rates across differ-
ent muscle lengths. Likewise, contractile twitch properties of
recruited MUs remained unaltered across joint angles for both,
TA and SOL. Although this differs from other studies [48], the
reason for such conflict may be because our proposed twitch
dynamics is modeled at the activation level and serves as input
to a forward musculoskeletal model, where changes in muscle
length are explicitly accounted for. This can be observed in
our predictions where changes in ankle position are reflected
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Fig. 7. Normalized root mean squared error (RMSE) values (a) and
coefficient of variation (CoV) values (b) for the motor unit (MU)-Twitch
models (blue), EMG-driven models (red), and measured torque (yel-
low). Each point of the jitter plots represents a single repetition, i.e.,
a dorsi-plantar flexion contraction. The black triangles of the boxplots
represent notches, i.e., 95% confidence interval of the median values
(black dot). On the right, the probability density functions are displayed.
(***) indicates significant differences (p<0.001).

in changes in moment amplitudes (Fig. 6). Another reason
may be the limited range of ankle positions included in this
study. As we studied multiple muscles (including both plantar
and dorsi flexors), we chose angles around the anatomical
position (−10◦ to 10◦). On the other hand, studies of individual
muscles, such as the one by Cudicio et al. [48] for the TA,
observed changes at angles around the optimal fiber length
(0◦ to 40◦).

Our proposed MU-specific musculoskeletal model enabled
accurate moment predictions for a wide range of submaximal
voluntary contractions (ranging from 20 to 90 % of MVC) and
joint angles (from 10◦ of dorsiflexion to 10◦ of plantar flexion).
While the results of the MU-specific model were comparable
to those obtained by EMG-driven models (Fig. 7.a), this
approach offered the additional benefit of elucidating how
the CNS orderly recruits different types of MUs for force
generation, a crucial step towards understanding neural control
of force [30], [49]. Moreover, the MU-specific model achieved
higher generalization than traditional EMG-driven models
(i.e., lower RMSE variability across conditions), despite only
calibrating it with a single repetition of two % levels of
activation. Contrarily, the EMG-driven model’s performance
varied for each condition (e.g. higher for 40-60% MVC and
lower for 30 % MVC, Fig. 6). Notably, the distributions of

twitch properties are not integrated into the calibration tool
yet, i.e., they may not be optimal. This indicates a greater
degree of adaptability of our methodology across different
motor tasks, even without optimization of twitch parameters.
Future work will focus on optimizing the twitch parameters by
adjusting the means and standard deviations of their resulting
fitted Gaussian curves. This will improve moment estimation
and provide a more tailored set of contractile parameters.

In terms of variability, the MU-specific framework showed
significantly lower coefficients of variation (Fig. 7.b) than
the EMG-driven models, as observed in the shaded areas of
moment profiles depicted in Fig. 6. This is due to an improve-
ment in the activation dynamics by assigning physiological
twitch properties to each MU and the elimination of noise
components via MU decomposition and selection. Although
the model’s predictions do not reach the same CoVs as the
experimental moments, it represents a significant improvement
over the state-of-the-art and may lead to better control schemes
of neuro-rehabilitation technologies.

We successfully achieved matching the increase in acti-
vation with the increase in force magnitude by accounting
for non-identified MUs (i.e., normalization in Section II-D).
However, this methodology inherits the intrinsic limitations of
MU decomposition, including silent periods in the spike trains.
The high-moment profiles in Fig. 6 (see columns >50%MVC)
show that, even though our twitch models matched the ref-
erence amplitude, they produced a late moment response as
we were not able to decompose firing events from the onset
of the ramp. This late response is due to the challenge of
decomposing smaller MUs that are recruited earlier, in the
presence of bigger MUs (with greater action potentials).
In these cases, the standard EMG-driven models provided less
error in the predictions. Future work will focus on improving
the decomposition in high-moment trials and coalescing the
present methodology with a subject-specific MN pool model-
ing framework capable of generating complete in silico MN
pools based on the neuronal characteristics of decomposed
MUs [50], [51].

Another limitation of our methodology is the assumption
of constant MU twitch responses across time. While this
assumption ensures computational efficiency and served well
for predicting joint moments accurately in our experiments
(involving short-duration and slow contractions), it does not
fully account for the non-linear nature of tetanic force develop-
ment [36]. In particular, MU potentiation [52] and fatigue [53]
play significant roles in dictating progressive changes in twitch
responses. Future iterations will incorporate state-of-art formu-
lations (e.g., for potentiation [54] and fatigue [55]) to fine-tune
these time-dependent variations and enhance the physiological
realism of our models. This will further improve the accuracy
of muscle force predictions, especially during long, fast, and
repetitive contractions.

Although the present study was conducted offline, our
methodology was specifically designed to interface with
real-time musculoskeletal models [56], [57] that operate in
short time frames (<14 ms), well below the muscle electrome-
chanical delay. With this intention, we integrated computation-
ally efficient formulations to obtain firing properties (Eq. 1-2),
twitch characteristics (Eq. 3), and MU-specific activation
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dynamics (via discretized twitch models [15]). Future work
will further incorporate real-time decomposition techniques
(e.g., [58], [59]) for establishing human-machine interfaces
that concurrently decode MN firing patterns, contractile prop-
erties, muscle forces, and joint moments in real-time. This
has multiple implications for clinical implementation since,
once calibrated, our model-based approach can operate as
a function of MU firing events and joint angles, both of
which can be directly derived or measured from wearable
sensors. Nonetheless, a broader and more diverse participant
cohort is needed before clinical translation, since MU function
may vary depending on age [4], pathology [5], [40], motor
tasks [60], [61], and level of training [6], [62]. Future work will
expand the generalizability of our methodology to encompass
individuals of varying ages and impairments as well as a wider
range of motor tasks.

Notably, we performed our predictions in an open-loop fash-
ion with no corrective adjustments to compensate for errors in
our estimated twitch parameters. Although we validated our
framework by predicting accurate moments, further validation
is needed at the twitch level. Future work will employ imaging
techniques, such as ultra-fast ultrasound imaging [63] or
microendoscopy [64], to corroborate our estimated properties
against identified twitch dynamics of individual MUs.

In conclusion, our proposed MU-specific framework
demonstrated robustness in accurately predicting joint
moments across different ankle positions and levels of acti-
vation. Moreover, this approach allowed a more detailed
understanding of the interaction between MUs and the inner-
vated muscles at multiple levels, including neural, muscular,
and joint levels. This is valuable information to help track
condition-specific neural and mechanical adaptations in the
MU pool composition. Consequently, MU-specific models
could greatly enhance the design of effective interventions
to target specific MU types, thereby optimizing recovery of
neuromuscular function following impairment.
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