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Person-Specific Biophysical Modeling of
Alpha-Motoneuron Pools Driven by in vivo

Decoded Neural Synaptic Input
Rafael Ornelas-Kobayashi , Antonio Gogeascoechea , and Massimo Sartori

Abstract— Interfacing with alpha-motoneurons (MNs) is
key to understand and control motor impairment and
neurorehabilitation technologies. Depending on the neuro-
physiological condition of each individual, MN pools exhibit
distinct neuro-anatomical properties and firing behaviors.
Hence, the ability to assess subject-specific characteris-
tics of MN pools is essential for unravelling the neural
mechanisms and adaptations underlying motor control,
both in healthy and impaired individuals. However, mea-
suring in vivo the properties of complete human MN pools
remains an open challenge. Therefore, this work proposes
a novel approach based on decoding neural discharges
from human MNs in vivo for driving the metaheuristic
optimization of biophysically realistic MN models. First,
we show that this framework provides subject-specific
estimates of MN pool properties from the tibialis ante-
rior muscle on five healthy individuals. Second, we pro-
pose a methodology to create complete pools of in silico
MNs for each subject. Lastly, we show that neural-data
driven complete in silico MN pools reproduce in vivo MN
firing characteristics and muscle activation profiles dur-
ing force-tracking tasks involving isometric ankle dorsi-
flexion, at different levels of amplitude. This approach
can open new avenues for understanding human neuro-
mechanics and, particularly, MN pool dynamics, in a
person-specific way. Thereby enabling the development
of personalized neurorehabilitation and motor restoring
technologies.

Index Terms— Neuronal modeling, optimization, high-
density electromyography, motoneuron, neuromechanics.

I. INTRODUCTION

ALPHA-MOTONEURONS (MNs) are regarded as the
final common pathway of central nervous system’s motor

and sensory pathways. Therefore, getting insight into MN
behavior in vivo would be key for unravelling the neural
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mechanisms underlying motor control, both in healthy and
neurologically impaired individuals. Depending on the specific
neuro-physiological characteristics of an individual, including
age [1], level of training [2], [3], severity of motor disor-
der [4], [5] and neural injury [6], pools of MNs exhibit
distinctive neuro-anatomical properties and dynamics. For
this reason, the ability to assess subject-specific MN pool
characteristics is essential to understand motor impairment
and enable the development of tailored neurorehabilitation
technologies.

Signal-based approaches relying on high-density elec-
tromyography (HD-EMG) decomposition [7], [8], [9] enable
identifying the firing output of MNs in vivo [10], [11]. These
allowed the estimation of motor unit properties as innervation
zone and conduction velocity of muscle fibers [8]. However,
there is currently no existing method for characterizing the
electrophysiological properties of complete MN pools in vivo.

In this context, biophysical models based on Hodgkin and
Huxley’s description [12] enable establishing a link between
a neuron’s firing response to an arbitrary input and its elec-
trophysiological properties (i.e., membrane resistance, capaci-
tance, voltage threshold, conductance of ionic channels, etc.).
Previous implementations of biophysical MN models in motor
control [13], [14] investigated the neural mechanisms of force
steadiness [15], postural balance [16] and voluntary movement
[17], suggesting that a pool of MNs receive a common synaptic
input (CSI) that is linearly transformed into the neural drive to
muscle [17]. However, these computational approaches relied
on neuronal data derived from animal preparations [18], [19].
As such, current models are not able to capture electro-
physiological differences among human individuals, nor to
reproduce experimental firing patterns of human MNs in vivo
during the execution of a motor task, thus limiting the clinical
implications of these findings.

Metaheuristic optimization [20], [21] has been proposed for
identifying neuron model parameters that reproduce exper-
imental spike trains, including ionic properties of cortical
interneurons [22] and cerebellar granular neurons [23]. Despite
successfully characterizing neuron dynamics, these methods
have only been implemented in vitro, where firing responses
to controlled input currents injected into the soma can be
recorded.

This work proposes merging HD-EMG decomposition, bio-
physical modelling and metaheuristic optimization to create
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Fig. 1. Overview of neural-data driven framework for generating in silico motoneuron (MN) pools: in vivo spike trains are decoded from high-
density electromyography recordings via convolution kernel compensation blind source separation decomposition [9]. A subject-specific excitability
constant (∆IF) is determined using multiple objective optimization, and the common synaptic input (CSI) received by the MN pool is computed as
the product of ∆IF and the neural drive derived from in vivo MNs. Parameter optimization of in silico MNs driven by the CSI is then performed to
minimize recruitment time error and frequency-corrected temporal spike match. Based on probability density functions of the identified parameters,
additional in silico MNs are generated to complete an in silico pool of 200 MNs.

a novel neural-data driven framework. This approach con-
sists of decoding the activity of human MNs in vivo via
HD-EMG decomposition, and using it to drive the metaheuris-
tic optimization of biophysically realistic MN models. The
outcome are physiologically realistic estimates of complete
MN pool properties (i.e. distributions of soma sizes, ionic
channel dynamics, pool excitability) from specific subject’s
muscles, which subsequently enable the creation of in silico
MN pools that retain the same statistical behavior of their
in vivo counterparts. Our results evidence the ability of this
method for predicting in vivo MN firing characteristics and
muscle activation profiles throughout isometric force-tracking
tasks at varying levels of amplitude from the tibialis anterior
(TA) muscle on a group of five healthy individuals.

This approach opens new avenues for understanding the
neuronal mechanisms underlying human movement in a
person-specific way, thereby bridging the gap limiting the
development of personalized neurorehabilitation therapies and
motor restoring technologies.

II. METHODS

This framework consists of three main components (Fig. 1):
1) approximation of in vivo CSI from HD-EMG decomposed
MN spike trains, 2) parameter optimization of in silico MN
models driven by in vivo CSI to match recruitment time and
firing frequency of in vivo MNs, 3) generation of extended
in silico MN pools following subject-specific experimental
distributions of biophysical properties. These steps will be
described along study procedures from section II-C. onwards.

A. Participants Overview
Five healthy subjects were recruited (age: 27.4 ± 2.07

years, weight: 70 ± 12.34 kg, height: 173.6 ± 10.06 cm),
who provided a written informed consent to participate in
this experiment. All procedures were executed in compliance
with the medical ethical committee at Radboudumc, under the
research protocol NL73230.091.20.

B. Experimental Setup
After localization of TA’s muscle belly via palpation, the

skin was shaved and lightly abraded using abrasive paste
(Meditec,Pharma). An 8 × 8 electrode grid with conductive
gel was placed as described previously [24]. Subjects seated
on a Biodex chair (M4 Biodex Medical Systems Inc., Shirley,
NY, USA), with the right leg fixed with a knee joint angle
of 140◦ flexion and the right foot tightly strapped to the
dynamometer keeping the ankle joint angle in a neutral
position. Isometric ankle dorsi-flexion torque was acquired at
a sampling frequency of 512 Hz using National Instruments
Data Acquisition card (NI DAQ), while HD-EMG data was
simultaneously recorded via an in-house developed data acqui-
sition interface using TMSi Refa multichannel amplifier (TMS
International B. V., Oldenzaal, The Netherlands) at a sampling
frequency of 2048 Hz.

To determine the maximum voluntary contraction (MVC),
subjects were asked to apply maximal dorsi-flexion force for
a period of 5 s. This was repeated three times, with a resting
time of 1 min between each trial.

C. Study Protocol
Subjects performed a ramp-and-hold task at five different

target % MVC amplitudes: 10, 20, 30, 40, and 50% MVC.
The holding period of the ramp was set to 5s, and the speed
of the ascending-descending portions was set to 20% MVC/s.

Throughout the experiment, all five target %MVCs were
sorted randomly and five consecutive repetitions, for each
amplitude, were presented to the subjects through a visual
interface providing real-time feedback of the force-tracking
performance. To avoid the effects of fatigue, subjects had a
resting time of 5, 10, 15, 20 or 25s between each of the five
repetitions, depending on if the current target %MVC ampli-
tude was 10, 20, 30, 40 or 50%, respectively. Additionally,
there was a 120s resting period between the end of the five
repetitions and the next target %MVC amplitude.

Prior to recording, subjects underwent a learning trial to
familiarize with the force-tracking task: two repetitions for
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each target %MVC presented randomly with the same resting
rules.

D. High-Density Electromyography Decomposition
HD-EMGs were band-pass filtered with a 20 to 500 Hz

zero-phase Butterworth filter, and decomposed into indi-
vidual spike trains using convolution kernel compensation
blind source separation [9]. Each decomposed experimen-
tal spike train was as a binary vector where ‘1’ represented
a spike event and ‘0‘ meant no firing activity. Decomposed
spike trains underwent a quality-control algorithm (QC-MN),
as previously proposed [24], to ensure pulse-to-noise ratio
(PNR) > 20 dB, coefficient of variation < 0.3, and discharge
rates < 30 Hz [24]. These thresholds were chosen to remove
non-physiological spike trains while keeping a significative
amount per trial. MNs not fulfilling this criterion were
excluded.

E. Biophysical Motoneuron Model
MNs were described as single-compartment conductance-

based models including leakage (gl) sodium (gNa), slow
(gK s) and fast potassium (gK f ) channels, which have been
identified to reflect experimental neuronal behavior [13].
Ionic current was determined according to (1), where ENa
and EK correspond to the reverse potentials of sodium
and potassium, respectively. Voltage-dependent rate constants
(m, h, n, q) were computed using a pulse-based model [25],
which describes action potentials as rectangular pulses and
defines each rate constant based on parameters beta (βi ) and
alpha (αi ), where subscript i denotes each rate constant [25].

MN’s leakage conductance (2) and capacitance (C) (3) were
adjusted by the soma diameter (Ds), where Rm and Cm are
membrane specific resistance and capacitance, respectively.
Membrane voltage (Vm) was then computed according to
(4), where EL represents leakage Nernst voltage and Iin j the
current injected in the soma.

Iion = gNam3h (ENa − Vm) + gK f n4 (EK − Vm)

+ gK sq2 (EK − Vm) (1)

gl =
π D2

s

Rm
(2)

C = πCm D2
s (3)

Vm =
(
gl (EL − Vm) + Iion + Iin j

) (
dt
C

)
(4)

F. Common Synaptic Input Estimation
The in vivo CSI current (in A) was computed as the

product between the net discharge rate of the MN pool
(in Hertz) and a subject-specific gain (1I F) . This way,
in vivo CSIs enabled recruiting in silico MNs in a range of
Ds matching experimental measurements (i.e., 15 < Ds <

220 µm) [26]. The net discharge rate of the MN pool (i.e.,
neural drive) was derived as the low-pass filtered sum of trial-
specific MN spike trains (i.e., cumulative spike train filtered
by 200 ms Hann window) [17], normalized by the average
discharge rate of summated MNs. 1I F was determined via

multi-objective optimization of recruitment error (5) in two
conditions: a) earliest recruited in vivo MN and in silico MN
with lowest soma diameter, and b) latest recruited in vivo MN
and in silico MN with highest soma diameter. All remaining
parameters were kept as previously proposed [14], since prior
work [27] demonstrated dominance of Ds over recruitment
time. Optimization was executed using MATLAB’s genetic
algorithm (The MathWorks, Inc., Natick, MA, USA) for a
Gaussian distributed initial population size of 200 1I Fs in
the range of 0.1 to 1, an elite percentage of 10%, 70%
cross-over, and a function tolerance of 0.01. Gray relational
analysis [28] was subsequently applied on the resulting pareto
set to automatically determine the 1I F that best minimized
both error functions. This process was performed on every
participant, and each subject-specific 1I F was kept constant
throughout the entire study.

G. Motoneuron Parameters Identification
MN parameter identification was performed on one trial per

target %MVC (Section II-B), which yielded the highest num-
ber of decomposed MNs. The remaining trials were kept for
validation of force-profile tracking in silico MNs (Section II-I).

in silico MN models were created and paired to each in vivo
decomposed MN. Subsequently, the in silico MNs were driven
by the CSI derived from each corresponding target % MVC
trial (see section II-F). We implemented a double single-
objective optimization approach for robust sampling of the
optimal pareto space without increasing computational load
[29]. First, relative recruitment error (5) between in silico and
in vivo MNs was minimized by optimizing Ds within the
anatomical range of 15 to 220µm [26]. Subsequently, spike-
match (i.e. gamma-factor [30]) error (6), was minimized by the
optimization of βQ and αQ , as early work [27] indicated slow-
potassium dynamics to largely determine MNs’ firing features.

2
∣∣∣∣ spikese (i) − spikesm(i)

spikese(i)

∣∣∣∣
i=1

(5)

2
∣∣∣∣ fe − fm

fe

∣∣∣∣ −
2

1 − 2δ fe

(
Nc − 2δ fe Ne

Ne + Nm

)
(6)

where fe and fm represent the mean firing rate, Ne and Nm the
number of spike events, and spikese and spikesm the spike
trains of experimental (i.e. in vivo) and model (i.e. in silico)
MNs, respectively. Nc is the number of coincident spikes
within the time window δ = 2ms [30].

Optimization of both objective functions implemented
MATLAB’s genetic algorithm set to a population size of
200, elite percentage of 20%, cross-over of 70%, and func-
tion tolerance of 1e−5. Furthermore, the initial populations
for every parameter were generated randomly with uniform
distributions. To constrain the framework for providing phys-
iologically realistic solutions, the lower and upper boundaries
of βQ and αQ , as well as non-optimized parameters of the
model were kept the same as proposed previously [14].

After optimization, identified sets of MN parameters from
all %MVC amplitudes were merged together, and the proba-
bility density function (PDF) of each parameter was computed
using boundary-corrected kernel density estimator [31].
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H. Generation of Complete in Silico Motoneuron Pools
As indicated by Duchateau and Enoka [32], MN pool size

estimations of TA taken from human cadavers (i.e., 445 MNs)
may be overestimated, as electrophysiological approaches [33]
indicate a mean size of 200 ± 61 MNs. Since the usual
number of identifiable MNs via HD-EMG decomposition is
limited to few tens of MNs at forces up to 50% [7], [8] and
70% MVC [3], additional in silico MNs based on subject-
specific parameter’s PDFs were generated to create customized
pools of 200 MNs for every participant. First, Ds values were
randomly generated from the corresponding PDF. Following
previously proposed size-based ranges of βQ and αQ for differ-
ent MN-types [14], k-means clustering [34] was subsequently
performed to identify three clusters of parameters, thereby
defining cluster-specific PDFs. For each generated Ds , the
corresponding cluster was identified computing the minimal
distance to their centroids, and the values of βQ and αQ were
generated according to the cluster-specific PDF.

PDF-derived in silico MN underwent a pool quality-control
algorithm to exclude sets of parameters resulting in unrealistic
discharge rates (i.e., fm > max( f e)+ 3Hz). This consisted of
iterative simulations of MNs driven by the CSI derived from
the highest %MVC amplitude (i.e., where higher discharge
rates can be found). For each iteration, PDF-derived in silico
MNs not fulfilling discharge rate criteria were considered non-
realistic and discarded, the rest were approved and kept in the
pool. New sets of MN parameters were created following the
same rules, and the same procedure was repeated until all in
silico MNs in the pool fulfilled the discharge rate constrain.

I. Force-Tracking in Silico Motoneuron Pools
The relation between force produced by TA’s motor units

and the percentage of recruited MNs in the pool has been
described by an exponential fit [32]. As the force required to
reach 100% MN recruitment in TA is reportedly decreased
at high rates of force development (i.e., from ∼90% to
∼50% MVC) [35], [36] we modified the fit function [32]
accordingly (7) and implemented it to control the percentage
of MN recruitment as a function of % MVC throughout our
simulations.

Recruited M Ns[%] =
log |MV C |

0.0389
−2.118 (7)

J. Validation Procedures
Test 1 assessed whether optimization of proposed objective

functions enabled finding unique solutions for creating in
silico MN copies that fire similarly to in vivo MNs. For
this, we quantified the costs values of objective functions
(5) and (6) before optimization (i.e. using a set of initial
parameters

[
Ds0 , βQ0 , αQ0

]
= [30, 0.03, 1.5] corresponding

to an average small size MN, reportedly dominant in TA [37]
and traditionally associated to slow-type motor units [14]), and
after optimization. Additionally, we tested the repeatability
of the solutions on a representative set of 20 in vivo MNs
derived from a 50% MVC trial (i.e., including MNs from
all recruitment thresholds). For each MN, we performed ten

Fig. 2. Left panel: Identified parameters for a set of 20 representative
motoneurons (MNs) after 10 consecutive optimizations. Parameters
depicted in blue correspond to minimization of spike-match cost, Orange
corresponds to minimization of first-spike cost. Right panel: Cost values
of spike-match (blue) and first-spike (orange) for all in silico MNs before
(Gen) and after optimization (Opt). Plots normalized by the respective
maximum cost of each objective function.

consecutive optimizations and measured the standard deviation
(STD) of the resulting parameters.

Test 2 evaluated inter-subject variability in the identified
MNs PDFs. Assessed metrics included mean and STD among
MN parameters and cluster thresholds.

To validate whether in silico MNs driven by a trial-
specific CSI produced firing outputs of similar characteristics
as their in vivo counterparts, test 3 quantified absolute error
in recruitment time and mean discharge rate (during plateau)
between in vivo and in silico MNs. This was performed on
two conditions: before and after parameter optimization.

Test 4 assessed the ability for creating extended in silico MN
pools from subject-specific parameter’s PDFs. This analysis
included quantification at intra-subject level of median and
STD, as well as visual PDF inspection, of the parameters
describing optimized in silico MNs (i.e., the total number
of decomposed MNs) and extended in silico pools including
PDF-derived in silico MNs (i.e., 200 MNs).

Test 5 evaluated whether the use of extended in silico MN
pools driven by trial-specific CSIs improved the estimates of
force profiles (i.e., neural drive) throughout all conditions. Two
metrics were used for this: 1) Coefficient of determination
(R2) between measured torque and neural drive. 2) Coefficient
of variation (CoV) of neural drive. Statistical differences
between R2 and CoV of in vivo MNs, their corresponding in
silico copies, and the extended in silico MN pool (including
PDF-derived in silico MNs) were tested using non-parametric
Friedman test.

III. RESULTS

After HD-EMG decomposition and QC-MN, a total
of 413 MNs (PNR = 31.11 ± 7.2) from all subjects and
conditions were included in the study. MN count per subject
is shown in Fig. 3.

For all participants, the determined 1I F values were sim-
ilar (Table I), with an inter-subject mean 1I F = 2.049 ±

0.195 H z
A .

Test 1: After optimization, normalized cost values of both
objective functions (5) and (6) decreased by one order of
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Fig. 3. Subject-specific in vivo motoneuron (MN) properties identified by the optimization framework. Each MN is described by three parameters:
beta (βQ), alpha (αQ) and soma diameter (Ds). A) K-means clustering consistently identified three clusters of parameters across all subject. These
clusters were characterized for having a diameter threshold of Ds = 79.44 ± 5.28 µm between C1 and C2, and Ds = 133.88 ± 2.54 µm between
C2 and C3. The three clusters are color-coded in blue, red and green, corresponding to C1, C2 and C3. Additionally, the percentage of each cluster
within the MN pool is depicted on the upper right corner of each subject’s specific parameter characterization. Lastly, we show a pie chart depicting
the averaged cluster proportions and Ds threshold from all subjects. B) Each column shows the subject-specific distribution found for each MN
parameter.

TABLE I
SUBJECT-SPECIFIC EXCITABILITY CONSTANTS (∆IF)

[
Hz
A

]

magnitude for all subjects (Fig. 2). For the recruitment time
error function (5), cost values approached zero in all cases.
Repeatability test (Fig. 2) showed no difference in estimated
Ds for any MN after consecutive optimizations (average
STD = 0.018). For βQ and αQ , the average STDs were
1.511 and 1.212, respectively.

Test 2: The inter-subject mean value of DS was 113.53 ±

5.2 µm. Throughout all subjects, three clusters (Ci ) of MN
parameters were identified (Fig 3.A), with both βQ and αQ
showing increasing amplitude and spread as Ds increases. All
five subjects showed Ds thresholds separating three clusters
of parameters. The inter-subject threshold between C1 and C2
was found at Ds = 79.44 ± 5.28 µm, whereas the threshold
between C2 and C3 was Ds = 133.88 ± 2.54 µm. Based on to
these cluster thresholds, the proportions of MN sizes found in
the pool included: C1 = 28.6 ± 5.59%, C2 = 39.6 ± 4.72%,

and C3 = 31 ± 4.85% (Fig. 3.B). Similarities in inter-subject
PDFs were found for the three MN parameters (Fig. 3.C), with
the largest differences found in Ds , where seemingly multi-
modal distributions can be observed.

Test 3: Fig. 4 shows a representative instance of the spike
trains produced by in silico MNs (from subject 2) before and
after optimization. Recruitment time of in silico MNs before
optimization remained unaltered for all cases (Fig. 4.A), and
the net discharge rate exhibited a limited range that varied from
6.78 to 7.42 Hz as %MVC increased (Fig. 4.C). In contrast,
in silico MNs after optimization matched recruitment time
of in vivo MNs with an error of < 0.01 s (Fig. 4.B), and
enabled replicating the full experimental net discharge rate
range of 9.45 to 14.69 Hz (Fig. 4.C). The firing characteristics
of identified in vivo MNs and their in silico counterparts
(before and after optimization) from all trials are depicted per
subject in Fig. 5. As shown by the boxplots in Fig. 6, the
absolute errors in recruitment time and mean firing frequency
(during plateau) were significantly reduced across all condi-
tions after parameter optimization: the absolute recruitment
time error median decreased from 365.7 ms to 0.48 ms, and
the maximum outlier value from 2.69 s to 0.017 s. For absolute
discharge rate error, optimization decreased the median value
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Fig. 4. Example of in silico MNs spike trains and estimated net
discharge rate of the MN pool, before (i.e., generic) and after (i.e.,
optimized) parameter optimization (subject 2). A) in vivo (blue) and
generic in silico (red) MN spike trains. B) Optimized in silico MN spike
trains (red) (matching in vivo MNs (blue). C) Estimated net discharge
rate of MNs (i.e., low pass filtered cumulative spike train, normalized by
average discharge rate of all MNs) for each % MVC amplitude using
spike trains from in vivo (blue), generic in silico (orange) and optimized
in silico (red) MNs.Error bars depict standard deviation.

from 5.8858 Hz to of 0.208 Hz, and the maximum outlier from
13.86 HZ to 5.75 Hz.

Test 4: Our proposed algorithm for extending the number
of in silico MNs to complete a pool size of 200 MNs did
not alter the original parameter’s PDFs (Fig. 7). This held
true regardless of the number of in vivo MNs identified for
each subject (e.g., for subjects one and four, only 18% and
30% of the MNs in the pool were identified, respectively,
whereas 64% was identified for subject three). In all cases, the
PDFs remained largely unaltered. There were no considerable
differences in the median or STD of the subject-specific PDFs
of the extended in silico MN pools (Table II).

Test 5: Fig. 8 shows an example of a subject-specific in
silico MN pool (from subject four) driven by the CSI cor-
responding to each target %MVC amplitude. As depicted by

the raster plots (Fig. 8.A) showing the firing activity of the in
silico MNs, the percentage of pool recruitment increased loga-
rithmically as torque increased, going from ∼60% recruitment
at 10 % MVC, to ∼100% recruitment at 50%MVC. For all
%MVC amplitudes (Fig. 8.B), the neural drive produced by
the in silico MN pool closely resembled the corresponding
force profile, achieving an R2

= 0.86 ± 0.04 with p-values
< 0.005, and CoV = 68.12 ± 7%. In contrast, the neural
drive estimated from in vivo MNs (Fig. 8.C) resulted in R2

=

0.723 ± 0.08 and CoV = 75.47 ± 11.78%. Fig. 9 shows
R2 and CoV of in vivo MNs, optimized in silico MNs, and
extended in silico pool across all subjects and conditions. The
non-parametric Friedman test showed no significant difference
in either R2 or CoV between in vivo and in silico MNs,
indicating that in silico MN pools generated through this
framework closely mimic the firing characteristics of their
in vivo counterparts. Between in vivo MNs and extended in
silico pool, however, non-parametric Friedman test showed
statistically significant improvement in R2, which increased
from 0.7997 ± 0.08 to 0.8716 ± 0.06. This represents a
relative improvement of 9.66 ± 7.41% using the in silico
MN pool, in comparison to only in vivo MNs. Although
not statistically significant, the CoV corresponding to the
extended in silico pool decreased relatively to the in vivo MNs
by 5.16 ± 4.49 %.

IV. DISCUSSION

This work combined HD-EMG decomposition, biophysical
neuronal modelling and metaheuristic optimization to charac-
terize the subject-specific physiological properties of complete
pools of MNs innervating TA in healthy individuals. For
this, we established in silico MN models driven by in vivo-
derived CSI, and optimized their parameters to reproduce the
firing behavior of in vivo MNs. Subsequently, we used PDFs
from the identified parameters as blueprints to create complete
subject-specific in silico MN pools capable of estimating MN
pool activity and muscle activation profiles for TA throughout
multiple levels of isometric activation.

The excitability of a single MN is described by its current-
frequency slope [38]. Analogously, here we proposed 1I F
as the slope between CSI and the net firing activity of the
MN pool. Hence, 1I F can be interpreted as a subject-specific
parameter reflecting spinal excitability. We found relatively
similar values of 1I F for all subjects (table I). This may
be due to the inclusion of only healthy subjects from a
population of similar ages and sizes. Notably, the identified
values of 1I F matched with experimental current-frequency

slopes reported for single MNs (1.7556 ± 0.4953 Hz
A ) in

the primary firing range (<40 Hz) [38]. Additional studies
are required to assess whether 1I F may reflect the averaged
current-frequency slopes of single MNs within the pool.

As this framework relies on the availability of in vivo MNs
representing the entire pool, the experimental protocol is key
to ensure the activation of different types of motor units.
Here, we used trapezoidal ramps at a constant rate of force
development where target forces were reached in 0.5 < t <

2.5 s. Evidence of decreased recruitment thresholds in TA’s
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Fig. 5. Mean discharge rate at plateau vs recruitment threshold of in vivo (blue) and optimized in silico (red) motoneurons throughout all trials.

TABLE II
SUBJECT-SPECIFIC BIOPHYSICAL PROPERTIES OF in Vivo IDENTIFIED MNS AND in Silico POOLS 200 MNS (MEDIAN ± STD)

Fig. 6. Absolute error in mean discharge rate [Hz] and recruitment
time [s] between in vivo MNs and in silico MNs before (Gen) and after
parameter optimization (Opt) across all subjects and conditions.

MNs at this rates [35] suggests that MNs from all thresholds of
recruitment could be activated for the levels of forces included
in this study [39]. However, HD-EMG decomposition does not
guarantee the identification of every MN, particularly from
deeper motor units or in the upper/lower end of recruitment
order. Due to the importance of the latter for estimating 1I F ,
not identified MNs of the earliest/latest recruitment order in the
muscle may lead to over/under estimated 1I Fs, respectively.
Additional studies are necessary to assess the impact that this
may have over the resulting parameter’s PDFs.

In agreement with Henneman’s size principle [40], we found
that optimization of DS substantially minimized recruitment
error (5) (Fig. 2), evidencing the key role of MN soma size
over recruitment order. Spike-match (6), minimized through
optimization of βQ and αQ , yielded relatively larger cost
values in comparison. This may be due to the short time
window used for determining coincident spikes (δ = 2ms),
as well as the exclusion of other ionic channels. Spike-
match could be further enhanced by optimizing additional
ionic channel properties, thought it would increase compu-
tational load and parameter space. In terms of repeatability,
DS showed neglectable variability throughout repeated opti-
mizations (Fig. 2). This is not the same for βQ and αQ ,
which can be explained by the intrinsic randomness behind
temporal MN firing patterns and metaheuristic optimization.

Fig. 7. Proportion of optimized (blue) and PDF-derived (yellow) in silico
MNs for every subject (left). Parameter distributions of optimized MNs
(blue) and extended in silico pools of 200MNs (orange) (right) show that
identified parameter distributions remain unaltered in the in silico pool.

However, although both parameters showed variability across
repeated optimizations, each oscillated around a mean value
seemingly related to DS . As shown in Fig. 3, we found that
value and spread of βQ and αQ increased with DS , suggesting
proportionality be between voltage-dependent rates and MN
soma size.
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Fig. 8. Example of firing activity and force profiles produced by the in silico MN pool (from subject 4) for all levels of % MVC amplitude. A) The
raster plots shows optimized in silico MNs (red) and the PDF-derived MNs (green) sorted in ascending order by diameter size. B) The measured
torque (black) and neural drive produced by in silico MN pool (green) are plot together. On top of each figure, the coefficient of variation (CoV)
and determination (R2) are depicted (green). C) Measured torque is plot together with the neural drive derived from in vivo decoded (blue) and
optimized in silico MNs (red). In accordance with this same color code, CoV and R2 are shown for on top of each figure.

Fig. 9. Calculated R2 and CoV for in vivo MNs (blue), optimized
in silico MNs (red), and extended in silico pool including PDF-derived
MNs (green) across all subjects and conditions. Statistical difference
between in vivo MNs and in silico pool, as determined by non-parametric
Friedman test, indicated by a star.

In general, we observed smaller βQ values associated to
higher discharge rates and, thus, earlier recruited (i.e., smaller
size) MNs. This is consistent with the size-based parameters
proposed by Kohn and Abdala for different types of MNs
[14]. This framework assumed the same absolute ranges of
MN parameters for every subject (i.e., inter-subject differences
are given by the PDFs). Here, we found disctinctive PDFs for
every subject (test 2, Fig. 3), with largest inter-subject variabil-
ity observed in DS . For subject 1, we observed a distinctive
DS distribution, which could be explained by the limited
number of decoded MNs in comparison with other subjects.
However, since our framework did not include MN-tracking to
control for repeated units (i.e., same MN identified in multiple
contractions), we cannot discard that PDFs derive from larger
MN counts may be biassed by repeated units, particularly
in the lower-end of recruitment order. Future work should
implement MN-tracking and assess the impact that number of
decomposed MNs has on the estimation of PDFs represantive

of the entire MN pool. Furthermore, future work should test
wheter fixed ranges of MN parameters enable characterizing
pool properties in elderly and imparied subjects, as reported
adaptations in motor unit sizes and contraction speeds [41]
have been suggested to be a consequence of age-related losses
of larger size MNs [1], while altered MN soma sizes have
been related to neuronal lesion and motor disorders [42].
Traditionally, motor unit types (i.e., slow, fatigue resistant and
fast fatigable) have been associated to MN soma size. Studies
of human autopsies [37] reported that approximately 70 % of
the motor units innervating TA are associated to small size
MNs [18]. Our results showed that, for every subject, the
dominant clusters C1 and C2 comprised together ≈ 70 % of
the MN pool. Future work will systematically assess whether
this cluster-based classification of MN parameters could be
used for in vivo identification of distinct motor unit types.

HD-EMG decomposition revealed that the firing frequency
of in vivo MNs increased proportionally to % MVC (Fig. 4.C).
Although we did not control for coactivation of antagonist
muscles (i.e., MN activity may be overestimated, particularly
at higher % MVCs), this is consistent with previous find-
ings [39] suggesting that rate coding has a dominant role in the
modulation of force during high speed isometric contractions.
After parameter optimization, in silico MNs driven by in vivo
CSI reproduced the same degree of frequency modulation
(Fig. 4.C) and matched both recruitment threshold and dis-
charge rate (Fig. 5) of in vivo MNs for all subjects and condi-
tions (Fig. 6). Although these results do not validate the under-
lying in silico MN properties, especially considering the lim-
ited set of isometric contractions included in the experiment,
this is the first work able to create neural-data driven models
that capture subject-specific dynamics of in vivo MNs. More-
over, parameter ranges for optimization were derived from
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the closest approximations available to in vivo human proper-
ties [26]. Given the technical challenge of measuring human
MN properties in vivo, matching recruitment threshold and dis-
charge rates is currently the only viable alternative for in vivo
validation. Future work will aim at implementing a neuro-
muscular model for validation at the level of generated torque.

The resulting parameter’s PDFs enabled extending the
number of in silico MNs to complete a pool of 200 MNs
(Fig. 7) while retaining the same PDFs as initially identified.
Since identified PDFs of βQ were skewed to the lower
end of the distribution for every subject (Fig. 7), given the
inverse relationship we found between βQ and discharge
rate, we implemented a quality-control algorithm to prevent
PDF-derived in silico MNs from firing at discharge rates
significatively larger than in vivo MNs. Here, we defined a
tolerance of 3Hz. However, future work should systematically
assess whether this threshold and rejection criteria are enough
to compensate for not identified in vivo MNs. In comparison
to the neural drive estimated from in vivo MNs (Fig. 8. D),
this approach of driving in silico MN pools with trial-specific
in vivo CSIs resulted in better estimations of force profiles
as indicated by the higher R2 achieved by the in silico pools
(Fig. 8.C). This may be due to the availability of neural data
from entire MN pools, which is not accessible via HD-EMG
alone, as larger motor units (i.e. producing action potentials
of higher amplitude) overshadow smaller units [43] and pre-
vent identifying earlier recruited MNs. This is particularly
noticeable at 30%, 40% and 50% MVC, where the in vivo
neural drive shows large fluctuations and mismatches during
the ascending/descending portions of the ramps (Fig.8.C).
In contrast, additional spike trains from the in silico MN pool
resulted in smoother neural drive estimates that follow more
closely the torque profile (Fig. 8.B).Moreover, we found that
R2 of the in silico pool increased with % MVC. This could be
explained by the larger number of recruited MNs at higher %
MVCs (7). With more MNs contributing to the neural drive,
the transmission of the CSI may be improved and the CoV
reduced, thereby enhancing force steadiness [44]. Regardless,
statistical significant improvement in R2 was found for all sub-
jects and conditions using in silico MN pools (Fig. 9). In the
future, this framework could be used to complement HD-
EMG decomposition for deriving mechanically consistent MN
spike trains (e.g., not exhibiting pauses, noise-like spikes or
merging inconsistencies). However, to validate the percentage
of recruited MNs from the in silico pool as a function of force
magnitude, future work should look into the implementation
of MN-specific twitch models.

As MN excitability is thought to be modulated dur-
ing dynamic contractions and may vary with rate of force
development [35], future work should also evaluate whether
this approach for driving in silico pools of MNs generalize to
different motor conditions. Given the challenge of predicting
broader repertoires of motor tasks, future work may also look
into the addition of dendritic neuromodulation to our MN
models, as persistent-inward currents have been reported to
play a substantial role modulating MN behavior [45].

Lastly, we emphasize that all MN pool characteristics here
discussed were derived from TA, the main contributing muscle

to ankle dorsi-flexion. Applying this method to other mus-
cles may result in distinctive motor unit sizes and distribu-
tions [32]. However, although additional studies are required,
we believe this same framework can be used for any muscle
where the underlying neural data is available, as ranges for
parameter optimization included measurements from several
limb muscles [13], [26], and large inter-muscle similarities in
contractile and discharge characteristics have been previously
reported [32]. Future work will focus on applying this frame-
work to different muscles and addressing the possibility of
creating comprehensive subject-specific neuro-musculoskeletal
models for simulating the neuro-mechanical interaction of
multiple muscles.

V. CONCLUSION

This study demonstrated the ability of our neural-data driven
framework for creating subject-specific in silico MN pools that
enable predicting in vivo MN firing characteristics and muscle
activation profiles throughout isometric force-tracking tasks at
varying levels of amplitude. Thus, bridging the gap between
current neuromechanical models and clinical practice.

ACKNOWLEDGMENT

The authors would like to thank Buitenweg J. and Yavuz U.
for their contribution to the design of this study. They also
thank Van Asseldonk E. for his advice and support.

It was brought to the authors attention that, during the
editorial process, Caillet et al. published a methodology for
estimating the firing behavior of complete motoneuron pools
from high-density electromyography [46]. Given the affinity
between their work and ours, we consider it relevant to
acknowledge it here.

REFERENCES

[1] M. R. Roos, C. L. Rice, and A. A. Vandervoort, “Age-related changes
in motor unit function,” Muscle Nerve, vol. 20, no. 6, pp. 679–690,
1997, doi: 10.1002/(SICI)1097-4598(199706)20:6<679::AID-
MUS4>3.0.CO;2-5.

[2] G. Kamen and C. A. Knight, “Training-related adaptations in motor
unit discharge rate in young and older adults,” J. Gerontology A,
Biol. Sci. Med. Sci., vol. 59, no. 12, pp. 1334–1338, Dec. 2004, doi:
10.1093/gerona/59.12.1334.

[3] A. Del Vecchio et al., “The increase in muscle force after 4 weeks of
strength training is mediated by adaptations in motor unit recruitment
and rate coding,” J. Physiol., vol. 597, no. 7, pp. 1873–1887, Apr. 2019,
doi: 10.1113/JP277250.

[4] A. Thibaut, C. Chatelle, E. Ziegler, M.-A. Bruno, S. Laureys, and
O. Gosseries, “Spasticity after stroke: Physiology, assessment and treat-
ment,” Brain Injury, vol. 27, no. 10, pp. 1093–1105, Sep. 2013, doi:
10.3109/02699052.2013.804202.

[5] E. Lorusso, J. J. Hickman, and X. Guo, “Ion channel dysfunction
and altered motoneuron excitability in ALS,” Neurological Disorders
Epilepsy J., vol. 3, no. 2, pp. 1–13, 2019.

[6] P. Bose, R. Parmer, P. J. Reier, and F. J. Thompson, “Morphological
changes of the soleus motoneuron pool in chronic midthoracic contused
rats,” Experim. Neurol., vol. 191, no. 1, pp. 13–23, Jan. 2005, doi:
10.1016/j.expneurol.2004.08.028.

[7] A. Holobar and D. Zazula, “Gradient convolution kernel compensation
applied to surface electromyograms,” in Proc. Int. Conf. Independ.
Compon. Anal. Signal Separat., 2007, pp. 617-624.

[8] R. Merletti, A. Holobar, and D. Farina, “Analysis of motor units
with high-density surface electromyography,” J. Electromyogr. Kinesiol.,
vol. 18, pp. 879–890, Dec. 2008, doi: 10.1016/j.jelekin.2008.09.002.

http://dx.doi.org/10.1002/(SICI)1097-4598(199706)20:6<679::AID-MUS4>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-4598(199706)20:6<679::AID-MUS4>3.0.CO;2-5
http://dx.doi.org/10.1093/gerona/59.12.1334
http://dx.doi.org/10.1113/JP277250
http://dx.doi.org/10.3109/02699052.2013.804202
http://dx.doi.org/10.1016/j.expneurol.2004.08.028
http://dx.doi.org/10.1016/j.jelekin.2008.09.002


ORNELAS-KOBAYASHI et al.: PERSON-SPECIFIC BIOPHYSICAL MODELING OF ALPHA-MOTONEURON POOLS 1541

[9] A. Holobar, M. A. Minetto, and D. Farina, “Accurate identification
of motor unit discharge patterns from high-density surface EMG and
validation with a novel signal-based performance metric,” J. Neural
Eng., vol. 11, no. 1, Feb. 2014, Art. no. 016008, doi: 10.1088/1741-
2560/11/1/016008.

[10] A. D. Vecchio et al., “You are as fast as your motor neurons: Speed
of recruitment and maximal discharge of motor neurons determine the
maximal rate of force development in humans,” J. Physiol., vol. 597,
no. 9, pp. 2445–2456, Mar. 2019, doi: 10.1113/JP277396.
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