
 

 

 

 
 

Abstract— The efficacy of trans-spinal direct current 

stimulation (tsDCS) as neurorehabilitation technology remains 

sub-optimal, partly due to the variability introduced by subject-

specific neurophysiological features and stimulation conditions 

(e.g. electrode placement, stimulating amplitude, polarity, etc.) 

Hence, current therapies apply tsDCS in an open-loop fashion, 

resulting in a lack of standardized protocols for controlling 

elicited neuronal adaptations in closed-loop. Through the 

combination of high-density electromyogram (HD-EMG) 

decomposition, biophysical neuronal modelling and 

metaheuristic optimization, this work presents a novel neural 

data-driven framework for estimating subject-specific features 

and quantifying acute neuronal adaptations elicited by tsDCS on 

incomplete spinal cord injury subjects. This approach consists of 

calibrating the anatomical parameters (e.g. soma diameter) of in 

silico α-motoneuron (MN) models for firing similarly to in vivo 

MNs decoded from HD-EMG. Assuming that cathodal-tsDCS 

elicits excitability changes in the MN pool, while preserving their 

anatomical parameters, optimization of an excitability gain 

common to the entire pool was performed to minimize 

discrepancies in firing rate and recruitment time between in vivo 

and in silico MNs after cathodal-tsDCS. This quantification of 

excitability changes on MN models calibrated in a person 

specific way enables closing the loop with neuro-modulation 

devices to tailor neurorehabilitation therapies. 

 
Clinical Relevance— This framework addresses a key 

limitation in non-invasive neuro-modulative technologies via a 

novel model-assisted framework that enables quantifying acute 

excitability changes induced on a person-specific in silico MN 

pool calibrated using in vivo neural data. This will enable the 

development of advanced controllers for modulating targeted 

neuronal adaptations in closed-loop.  

 

I. INTRODUCTION 

Spinal cord injury (SCI) may result from a traumatic injury 

disrupting the communication between (supra) spinal 

structures and the spinal neurons below the injury site. Such 

disruption results in structural changes and alterations of 

spinal neuron excitability [1], which may lead to chronic pain 

[2], sensory-motor impairment [3] and spasticity [4]. Current 

non-invasive neurorehabilitation technologies aiming at 

restoring the sensory-motor function include physical 

activity, cell therapy, pharmacological drugs and electrical 
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stimulation of the spine [5], with the latter gaining increasing 

interest over the last decade. Trans-spinal direct current 

stimulation (tsDCS) consists in delivering weak electrical 

currents into the spinal cord through surface electrodes placed 

over the skin. TsDCS has the potential of modulating 

plasticity in the spinal circuitry [6] and promote long-lasting 

adaptations after stimulation offset, when integrated in 

activity-based rehabilitation programs [7]. Although the exact 

mechanism of interaction remains unclear, tsDCS is known to 

induce changes in the excitability and rhythmic firing of α-

motoneurons (MNs)  [8]–[10] depending on the polarity of 

the stimulating current (i.e., anodal facilitates and cathodal 

depresses MN firing). Moreover, the non-invasive nature of 

tsDCS makes it a widely used alternative in the treatment of 

spasticity [11] and chronic tetraplegia [12]. However, 

stimulation protocols and neural responses to tsDCS vary 

largely across individuals, partly due to subject-specific 

neurophysiological features, electrodes placement and lesion-

specific neuropathology. As a result, current tsDCS therapies 

follow highly empirical approaches, sometimes even failing 

at eliciting any response [13]. Therefore, there is a need for 

developing standardized protocols and quantitative tools for 

targeting and controlling elicited neuronal adaptations.  

In this context, the ability of measuring the firing properties 

of in vivo MNs, which represent the final common pathway 

of the central nervous system, becomes crucial to quantify the 

acute and long term adaptations elicited by tsDCS. In 

previous work, we provided evidence that the in vivo common 

synaptic input (CSI) received by the MN pool could be 

derived from motor unit spike trains decoded via high-density 

electromyogram (HD-EMG) decomposition and be 

subsequently used as reference for the metaheuristic 

optimization of geometrical and electrical parameters of 

biophysical MN models [14]. This approach enabled in silico 

MN models to fire similarly as in vivo MNs.  

In this work, we present a novel neural data-driven framework 

where in silico MN models are calibrated in a person specific 

way for quantifying MN properties on SCI subjects, and 

estimating acute tsDCS-induced adaptations on SCI subjects. 

Preliminary results demonstrate that this approach is capable 
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of capturing changes in the MN pool excitability, which opens 

new avenues for the development of closed-loop non-invasive 

neurorehabilitation technologies, where stimulation protocols 

and parameters can be automatically adjusted for the optimal 

modulation of a target neuronal adaptation.  

 

II. METHODS 

A. Participant description 

The subject included in this study was a 62 years old male 

with chronic incomplete SCI at the level of the 4th cervical 

vertebrae [15]. According to the American spinal injury 

association, participant had a SCI impairment scale (AIS) D, 

walking index > 1 and independence measure > 30. Before 

the experiment, the subjects signed a written informed 

consent and all study procedures were approved by the local 

Ethics Committee of Twente (METC Twente, reference 

number: NL49561.044.14 / P14-22). 

 

B. Experimental procedure 

Throughout the experiment, the participant was seated on a 

medical chair and tightly strapped by built-in racing belts to 

avoid any trunk movement. Supported by a solid frame with 

Velcro straps, the right leg was fixed to keep hip, knee and 

ankle joint angles of 90°. Ankle plantar-flexion torque was 

measured using a force plate (Advanced Mechanical 

Technology, Inc., Watertown, USA), while HD-EMG was 

recorded from the Soleus muscle using an 8x8 electrode grid 

and TMSi Refa multichannel amplifier (TMS International 

B.V., Oldenzaal, The Netherlands) at a sampling frequency of 

2,048 Hz. The maximum voluntary contraction (MVC) was 

determined as the highest plantarflexion force achieved by the 

subject out of three trials (spaced by a 1-2 min resting time) 

applying as much force as possible during 5s.  

As previously described [15], the participa received cathodal 

and sham tsDCS, where sham was the control condition. In 

both cases, the active electrode was centered between 11th and 

12th thoracic vertebras, and the ground electrode placed over 

the right shoulder. Stimulation was applied via a custom-build 

stimulator (TMS International B.V., Oldenzaal, The 

Netherlands) while performing a force tracking task of 

sinusoidal waves with mean amplitude of 5% to 10% MVC. 

To assess the effect of tsDCS, three conditions were analyzed: 

before stimulation (pre-tsDCS), immediately after sham 

(sham-tsDCS) and after cathodal stimulation (cathodal-

tsDCS) [15]. For each condition, torque and HD-EMG were 

recorded from the subject following a ramp force profile of 

20%MVC, with a 25s plateau and a speed of 2.5MVC/s 

during both ascending and descending parts. HD-EMG data 

was then decomposed into individual spike trains using 

convolution kernel compensation [16]. Each spike train was 

defined as a binary vector where 1 represented a spike event 

and 0 meant no firing activity. 

 

C. Biophysical motoneuron model 

MN models were implemented as single-compartment 
conductance-based models (Fig 2). The included ionic 
channels were sodium (𝑔𝑁𝑎), slow (𝑔𝐾𝑠)  and fast potassium 
(𝑔𝐾𝑓), which were shown to enable reproducing experimental 

neuronal behavior [17]. Equations (1) and (2) describe the MN 
model, where 𝐸𝑁𝑎 and 𝐸𝐾  correspond to the reverse potentials 

Figure 1. Overview of the neural data-driven model for quantifying excitability changes: In-vivo motoneurons (MNs) spike trains are decomposed from 

high-density electromyogram recordings pre- (blue) and post cathodal- (red) trans-spinal direct current stimulation (tsDCS). Net MN pool discharge 
rate (NDR) is estimated from decoded MN spikes, and the corresponding common synaptic current is derived from the product between the respective 

NDR and the excitability constant. The initial excitability constant 𝐼𝐹𝑃𝑟𝑒 is determined by fitting the theoretical MN diameter range to the experimental 

recruitment times. MN model optimization is then performed for every decoded MN to reproduce the same firing pattern as pre-tsDCS in vivo MNs. 

Subsequently, tsDCS-induced changes were quantified by optimizing post cathodal-tsDCS excitability constant (𝐼𝐹𝐶𝑎𝑡ℎ) to minimize  discharge rate and 

recruitment time root mean squared error between in silico MN models and post cathodal-tsDCS in vivo MNs. 
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of sodium and potassium, respectively, Rm is the membrane 
resistance, Cm the capacitance, and 𝐷𝑠 the soma diameter. As 
proposed by Cisi and Kohn [17], the voltage-dependent rate 
constants 𝑚, 𝑛 and ℎ were computed according to a pulse-
based approach [18] that maximizes computational efficiency. 
Instead of solving the set of differential equations described by 
Hodgkin and Huxley [19], the pulse-based model emulates the 
action potential as a threshold-dependent rectangular pulse, 
during which the dynamics of each ionic channels are given 
exclusively by defined parameters beta (β) and alpha (α) [18].   
  

𝐼𝑖𝑜𝑛 =   𝑔𝑁𝑎𝑚3ℎ(𝐸𝑁𝑎 − 𝑉𝑚) + 𝑔𝐾𝑓𝑛4(𝐸𝐾 − 𝑉𝑚) 

                    + 𝑔𝐾𝑠𝑞2(𝐸𝐾 − 𝑉𝑚) 
  

𝑉𝑚 = (
𝜋𝐷𝑠

2

𝑅𝑚

(𝐸𝐿 − 𝑉𝑚) + 𝐼𝑖𝑜𝑛 + 𝐼𝑖𝑛𝑗) (
𝑑𝑡

𝜋𝐶𝑚𝐷𝑠
2) 

   

D. Parameter optimization framework 

Previous work [14] demonstrated that, driven by an 
experimentally derived input current, multiple-objective 
optimization of 𝐷𝑠 and 𝛽𝑘𝑠 minimizes the error between 
experimental and simulated MN recruitment times and firing 
patterns, respectively. In order to improve computational time 
and sampling of the optimal pareto space [20], the hereby 
proposed MN model optimization framework implemented 
genetic algorithm (GA) for two consecutive single-objective 
optimization problems. First, recruitment time error (3) was 
minimized by optimizing only 𝐷𝑠. Then, the initial GA 
population of 𝛽𝐾𝑠 and 𝛼𝐾𝑠 was created based on their 
corresponding MN-type values [21], and second optimization 
was executed adjusting both 𝛽𝐾𝑠 and 𝛼𝐾𝑠 to minimize the 
frequency-corrected spike match error (4) [22]. In both cases, 
GA was set for a population size of 200, elite percentage of 
10% and 70% cross-over with a function tolerance of 0.01. 
   

2 | 
spikese(𝑖)  −  spikesm(𝑖) 

spikese(𝑖)
| 

𝑖=1

 

  
 

2 |
𝑓𝑒 − 𝑓𝑚

𝑓𝑒
| −

2

1 − 2𝛿𝑓𝑒
(

𝑁𝑐  −  2𝛿𝑓𝑒𝑁𝑒

𝑁𝑒  +  𝑁𝑚
) 

 

 

Where 𝑓𝑒 and 𝑓𝑚 are mean firing rate, 𝑁𝑒 and 𝑁𝑚 number of 

spikes, and 𝑠𝑝𝑖𝑘𝑒𝑠𝑒 and 𝑠𝑝𝑖𝑘𝑒𝑠𝑚  the spike trains of 

experimental and model MNs, respectively. 𝑁𝑐 is number of 

coincident spikes within a time window of 𝛿 = 2ms [22].  

Parameter optimization was performed by driving the MN 
models with the common synaptic input derived from the pre-
tsDCS condition current (see section II.E). To ensure 
physiologically realistic solutions throughout optimizations, 
𝐷𝑠 lower and upper boundaries were set to 20 and 200µm [23], 
respectively, whereas the boundaries of 𝛽𝐾𝑠 and 𝛼𝐾𝑠, as well 
as all the non-optimized parameters, were kept the same as 
defined by Elias and Kohn [24].  

 

E. Common input current estimation 

The main challenge for fitting neuronal models to in vivo 

neural spike trains is the measuring of the input current 

received by the MNs. Theoretical findings [25], however, 

suggest that the low-frequency components of the common 

synaptic input (CSI) received by the MN pool are linearly 

transformed into the neural drive to muscle (ND), which 

represents the MN pool net discharge rate (NDR), and can be 

estimated from experimental spike trains [26]. Consequently, 

we propose the non-invasive estimation of the in vivo CSI as 

the experimentally-derived ND multiplied by an excitability 

constant. Given the linear relationship between input current 

and MN firing frequency below 40Hz [27], [28], we defined 

this excitability constant as the current-frequency (I-F) slope 

between NDR (in Hertz) and CSI amplitude (in ɲA). To 

estimate pre-tsDCS NDR, we created a cumulative spike train 

(CST) summing the individual spike trains of all pre-tsDCS 

decoded MNs. The instantaneous CST discharge rate was 

calculated according to (5), where 𝑡𝑛 represents the discharge 

time of the  𝑛𝑡ℎ spike in the CST. The resulting signal was 

filtered by a moving average window of 500 samples [26] and 

normalized to have the same mean discharge rate as the 

averaged mean discharge rate of all individual MN 

comprising the CST.  
 

𝐷𝑅𝑛 =
1

𝑡𝑛 − 𝑡𝑛−1
                                 (5) 

 

The pre-tsDCS excitability constant (𝐼𝐹𝑝𝑟𝑒) was defined as the 

optimal I-F slope that minimizes the recruitment error (3) 

between: a) earliest recruited experimental MN and simulated 

MN with 𝐷𝑠 = 20µm, and b) latest recruited experimental MN 

and simulated MN with 𝐷𝑠 = 200µm. GA was executed as a 

multi-objective optimization problem where both a) and b) 

were optimized simultaneously and independently from each 

other to find the optimal pareto front for both error functions. 

Afterwards, Gray relational analysis (GRA) [29] was applied 

to automatically select the best 𝐼𝐹𝑝𝑟𝑒 solution from the 

optimal pareto set. Lastly, the product of NDR and best 𝐼𝐹𝑝𝑟𝑒 

was computed to obtain the CSI that drives MNs models 

during parameter optimization (see section II.D).  

 

F. Excitability changes induced by tsDCS 
 

Excitability changes in the MN pool were quantified by 

estimating the cathodal-induced excitability constant 

(𝐼𝐹𝐶𝑎𝑡ℎ). The value of 𝐼𝐹𝐶𝑎𝑡ℎ was determined using GA multi-

objective optimization to minimize the root mean squared 

error (RMSE) between a) mean discharge rates and b)  

(1) 

(2) 

(3) 

(4) 

Figure 2. Electrical circuit of the single-compartment motoneuron 

model depicting the reverse potentials and conductances of all the 

included ionic channels (adapted from [17]) 
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recruitment times of optimized MN models and in vivo MNs 

during cathodal-tsDCS. For this, optimized MN models were 

driven by the CSI derived from the cathodal-tsDCS condition 

(see section II.E). GRA was applied to the resulting optimal 

pareto front in order to determine the best 𝐼𝐹𝐶𝑎𝑡ℎ that equally 

minimizes the RMSE of both mean discharge rates and 

recruitment times. For control, the same process was 

performed on the sham-tsDCS condition to determine the 

corresponding 𝐼𝐹𝑆ℎ𝑎𝑚. 

 

III. RESULTS 

The optimal pareto set of 𝐼𝐹𝑝𝑟𝑒 and 𝐼𝐹𝐶𝑎𝑡ℎ are shown in Fig 3, 

and Fig 4, respectively, with the best solution determined by 

GRA highlighted in red. The 𝐼𝐹𝑝𝑟𝑒   value of 0.2018 achieved 

a relative recruitment error of 0.129s for the last recruited 

MN, and 0.104s for the first MN. The optimized parameters 

𝐷𝑠, 𝛽𝐾𝑠 and 𝛼𝐾𝑠 of each of the nine in vivo identified MNs 

(pre-tsDCS) are shown in Fig 5, with their corresponding 

distributions. Noticeably, the proportion of small diameter 

MNs is substantially larger than that of high diameter MNs.   

The optimal 𝐼𝐹𝐶𝑎𝑡ℎ = 0.253 achieved recruitment time and 

mean discharge rate RMSEs of 0.083 and 2.48, respectively. 

Figure 3. Optimal pareto front highlighting in red GRA’s best solution for 

minimizing  recruitment error of both earliest and latest recruited MNs. 

Figure 4. Optimal pareto front highlighting in red GRA’s best solution for 
minimizing recruitment time and mean discharge rate RMSE between all 

optimized MN models and in vivo MNs during cathodal-tsDCS. 

Figure 5. MN parameters as determined by the optimization 

framework. The three-dimensional plot on top shows each in vivo 
decoded MN as a dot characterized by its corresponding set of 

parameters 𝐷𝑠, 𝛽𝐾𝑠 and 𝛼𝐾𝑠. For visualization, MNs within a diameter 

range 20 and 40µm are color coded in blue, red between 40 and 150 

µm, and larger diameter values in green. Additionally, this figure shows 

the identified distribution of each parameter within the MN pool. 

Optimized MN parameters 
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While the respective RMSE values achieved by the optimal 

𝐼𝐹𝑆ℎ𝑎𝑚 = 0.1913 were 0.165 and 2.47. The contrast between 

all three slopes is shown in Fig 6. 𝐼𝐹𝑆ℎ𝑎𝑚 was remarkably 

similar to 𝐼𝐹𝑝𝑟𝑒, whereas 𝐼𝐹𝑐𝑎𝑡ℎ resulted in a considerably 

larger slope. Fig 7 depicts the average discharge rate and 

recruitment time of the seven in vivo MNs identified from the 

cathodal-tsDCS condition, together with the corresponding in 

silico MNs driven by the CSI derived  using 𝐼𝐹𝑝𝑟𝑒 and 𝐼𝐹𝑐𝑎𝑡ℎ. 

As observed, the change in I-F slope enables simulated MNs 

to better replicate the firing characteristics of the post-tsDCS 

experimental MNs. Absolute errors in discharge rate and 

recruitment are summarized in Fig 8.  

 

IV. DISCUSSION 

We proposed a subject-specific neural data-driven modelling 

framework for estimating MN properties and acute tsDCS-

induced adaptations in SCI-individuals. Model estimations of 

excitability changes due to cathodal tsDCS are seen in Fig 6, 

where the steeper value of 𝐼𝐹𝐶𝑎𝑡ℎ, in comparison to 𝐼𝐹𝑠ℎ𝑎𝑚 

and 𝐼𝐹𝑃𝑟𝑒 , implies that an increased input current is necessary 

for a same NDR. This supports experimental evidence of 

cathodal tsDCS depressing MNs excitability [10].  As shown 

in Fig 8, 𝐼𝐹𝐶𝑎𝑡ℎ improves both mean discharge rate and 

recruitment time error in comparison to 𝐼𝐹𝑃𝑟𝑒 . However, 

differences in MNs firing characteristics persist after 

optimization, suggesting that other mechanisms such as post-

activation depression [30] and alterations in common synaptic 

input [15] may need to be included to achieve a better fit. 

Moreover, while 𝐼𝐹𝐶𝑎𝑡ℎ decreased the mean firing frequency 

error, it also increased the variability in discharges. This may 

be an effect of cathodal tsDCS [15], although further studies 

in this direction are necessary, which may look into the 

inclusion of additional ionic channels in the MN models to 

better capture the firing behaviors of in vivo MNs.  

To match in vivo and in silico MNs recruitment time, 

parameter optimization assumed a soma diameter range of 20 

to 200μm. Although this range was taken from cadaver 

studies [23], discrepancies in morphology are to be expected, 

particularly after SCI [31] and neurogenerative diseases [32].  

Furthermore, to estimate 𝐼𝐹𝑃𝑟𝑒 , the framework assumes that 

the earliest recruited MN was that of smallest diameter (20 
μm), while the latest recruited had the largest diameter (200 
μm). To evaluate the impact of such fixed diameter ranges and 

test whether these methods and results generalize to more 

individuals, future work should focus on the parameter 

distributions and excitability constants of a larger number of 

SCI and healthy subjects. Since this work presented 

preliminary results from only one SCI subject, the study lacks 

statistical power. However, it stands as a demonstration of the 

distinctive role of the I-F slope for reducing discrepancies in 

the firing characteristics of MNs after cathodal stimulation 

within a same subject. Furthermore, future works should also 

assess H-reflex before and after stimulation to validate our 

estimation of 𝐼𝐹𝑃𝑟𝑒 , 𝐼𝐹𝑆ℎ𝑎𝑚 and 𝐼𝐹𝐶𝑎𝑡ℎ. 

Lastly, this approach inherits an intrinsic limitations of HD-

EMG decomposition [33]: larger motor units (producing 

Figure 6. Optimal I-F slopes determined for each condition: no-

stimulation (black), sham (blue) and cathodal-stimulation (red)  
 

Figure 7. MNs firing characteristics during cathodal-tsDCS. In vivo 
MNs are depicted in black, simulated MNs before excitability 

constant  optimization  (𝐼𝐹𝑝𝑟𝑒) in blue, and after (𝐼𝐹𝐶𝑎𝑡ℎ) in red. 

 

Figure 8. Absolute mean discharge rate and recruitment time error 
between cathodal-tsDCS in vivo and model MNs before optimization 

of excitability constant (𝐼𝐹𝑝𝑟𝑒) and after optimization (𝐼𝐹𝐶𝑎𝑡ℎ).  
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action potentials of higher amplitude) overshadow smaller 

units, thus limiting the total number of decomposed MNs and 

neglecting the contribution of earlies recruited MNs, further 

adding to the issue of a fixed diameter range. Moreover, as 

the number of identified MNs may vary across tasks, a robust 

algorithm for tracking motor units across conditions may be 

necessary to properly link in silico and in vivo MNs. 

 

V. CONCLUSION 

This work provides evidence of the ability of this neural data-

driven framework for non-invasively estimating MN 

properties of SCI subjects, and quantifying tsDCS-induced 

excitability changes in the MN pool. This opens new avenues 

for the development of model-based closed-loop controllers 

for neuro-modulation technologies.  
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