13 research outputs found

    Indirect adjustment for multiple missing variables applicable to environmental epidemiology

    Get PDF
    AbstractObjectivesDevelop statistical methods for survival models to indirectly adjust hazard ratios of environmental exposures for missing risk factors.MethodsA partitioned regression approach for linear models is applied to time to event survival analyses of cohort study data. Information on the correlation between observed and missing risk factors is obtained from ancillary data sources such as national health surveys. The relationship between the missing risk factors and survival is obtained from previously published studies. We first evaluated the methodology using simulations, by considering the Weibull survival distribution for a proportional hazards regression model with varied baseline functions, correlations between an adjusted variable and an adjustment variable as well as selected censoring rates. Then we illustrate the method in a large, representative Canadian cohort of the association between concentrations of ambient fine particulate matter and mortality from ischemic heart disease.ResultsIndirect adjustment for cigarette smoking habits and obesity increased the fine particulate matter-ischemic heart disease association by 3%–123%, depending on the number of variables considered in the adjustment model due to the negative correlation between these two risk factors and ambient air pollution concentrations in Canada. The simulations suggested that the method yielded small relative bias (<40%) for most cohort designs encountered in environmental epidemiology.ConclusionsThis method can accommodate adjustment for multiple missing risk factors simultaneously while accounting for the associations between observed and missing risk factors and between missing risk factors and health endpoints

    Prevalence of tanning equipment use among Canadians

    No full text
    The objective of this study was to collect prevalence estimates of indoor tanning usage and associated injuries in Canada. The rapid response component of the 2019 Canadian Community Health Survey collected data on the use of tanning equipment in the previous 12 months, including reasons for use, frequency/duration of use, precautions taken and adverse reactions or injuries.The 2019 research findings were as follows, an estimated 3.0% (95% CI: 2.5–3.4%) of Canadians reported that they had used indoor tanning equipment in the past year. Among users, 71.1% (95% CI: 63.9–78.3%) were female and females aged 18–34 were significantly more prevalent users compared to females aged 45 or older. The prevalence of indoor tanning was higher among people without a university degree; however, there were no differences in prevalence by household income or region. Most users indicated they used indoor tanning equipment within a tanning salon (75.3%: 95% CI: 69.1–81.6%) and the most common reason for usage was to develop a “protective” base tan (72.1%: 95% CI: 65.2–78.9%). Over one third (39.2%: 95% CI: 31.1–47.2%) of all users reported 10 or more sessions in the past year.The prevalence of indoor UV tanning usage is declining in Canada. Similar to results in 2014, the majority of users continue to be female, with a large number in the 18 to 34 age group

    Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2)

    No full text
    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents

    Cardiovascular and inflammatory mechanisms in healthy humans exposed to air pollution in the vicinity of a steel mill

    No full text
    Abstract Background There is a paucity of mechanistic information that is central to the understanding of the adverse health effects of source emission exposures. To identify source emission-related effects, blood and saliva samples from healthy volunteers who spent five days near a steel plant (Bayview site, with and without a mask that filtered many criteria pollutants) and at a well-removed College site were tested for oxidative stress, inflammation and endothelial dysfunction markers. Methods Biomarker analyses were done using multiplexed protein-array, HPLC-Fluorescence, EIA and ELISA methods. Mixed effects models were used to test for associations between exposure, biological markers and physiological outcomes. Heat map with hierarchical clustering and Ingenuity Pathway Analysis (IPA) were used for mechanistic analyses. Results Mean CO, SO2 and ultrafine particles (UFP) levels on the day of biological sampling were higher at the Bayview site compared to College site. Bayview site exposures “without” mask were associated with increased (p < 0.05) pro-inflammatory cytokines (e.g IL-4, IL-6) and endothelins (ETs) compared to College site. Plasma IL-1β, IL-2 were increased (p < 0.05) after Bayview site “without” compared to “with” mask exposures. Interquartile range (IQR) increases in CO, UFP and SO2 were associated with increased (p < 0.05) plasma pro-inflammatory cytokines (e.g. IL-6, IL-8) and ET-1(1–21) levels. Plasma/saliva BET-1 levels were positively associated (p < 0.05) with increased systolic BP. C-reactive protein (CRP) was positively associated (p < 0.05) with increased heart rate. Protein network analyses exhibited activation of distinct inflammatory mechanisms after “with” and “without” mask exposures at the Bayview site relative to College site exposures. Conclusions These findings suggest that air pollutants in the proximity of steel mill site can influence inflammatory and vascular mechanisms. Use of mask and multiple biomarker data can be valuable in gaining insight into source emission-related health impacts

    Indirect adjustment for multiple missing variables applicable to environmental epidemiology

    No full text
    Objectives: Develop statistical methods for survival models to indirectly adjust hazard ratios of environmental exposures for missing risk factors. Methods: A partitioned regression approach for linear models is applied to time to event survival analyses of cohort study data. Information on the correlation between observed and missing risk factors is obtained from ancillary data sources such as national health surveys. The relationship between the missing risk factors and survival is obtained from previously published studies. We first evaluated the methodology using simulations, by considering the Weibull survival distribution for a proportional hazards regression model with varied baseline functions, correlations between an adjusted variable and an adjustment variable as well as selected censoring rates. Then we illustrate the method in a large, representative Canadian cohort of the association between concentrations of ambient fine particulate matter and mortality from ischemic heart disease. Results: Indirect adjustment for cigarette smoking habits and obesity increased the fine particulate matter-ischemic heart disease association by 3%-123%, depending on the number of variables considered in the adjustment model due to the negative correlation between these two risk factors and ambient air pollution concentrations in Canada. The simulations suggested that the method yielded small relative bias (<40%) for most cohort designs encountered in environmental epidemiology. Conclusions: This method can accommodate adjustment for multiple missing risk factors simultaneously while accounting for the associations between observed and missing risk factors and between missing risk factors and health endpoints

    Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter : a Canadian national-level cohort study

    Get PDF
    Background: Few cohort studies have evaluated the risk of mortality associated with long-term exposure to fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM₂.₅)]. This is the first national-level cohort study to investigate these risks in Canada. Objective: We investigated the association between long-term exposure to ambient PM₂.₅ and cardiovascular mortality in nonimmigrant Canadian adults. Methods: We assigned estimates of exposure to ambient PM₂.₅ derived from satellite observations to a cohort of 2.1 million Canadian adults who in 1991 were among the 20% of the population mandated to provide detailed census data. We identified deaths occurring between 1991 and 2001 through record linkage. We calculated hazard ratios (HRs) and 95% confidence intervals (CIs) adjusted for available individual-level and contextual covariates using both standard Cox proportional survival models and nested, spatial random-effects survival models. Results: Using standard Cox models, we calculated HRs of 1.15 (95% CI: 1.13, 1.16) from nonaccidental causes and 1.31 (95% CI: 1.27, 1.35) from ischemic heart disease for each 10-μg/m³ increase in concentrations of PM₂.₅. Using spatial random-effects models controlling for the same variables, we calculated HRs of 1.10 (95% CI: 1.05, 1.15) and 1.30 (95% CI: 1.18, 1.43), respectively. We found similar associations between nonaccidental mortality and PM₂.₅ based on satellite-derived estimates and ground-based measurements in a subanalysis of subjects in 11 cities. Conclusions: In this large national cohort of nonimmigrant Canadians, mortality was associated with long-term exposure to PM₂.₅. Associations were observed with exposures to PM₂.₅ at concentrations that were predominantly lower (mean, 8.7 μg/m³; interquartile range, 6.2 μg/m³) than those reported previously.Population and Public Health (SPPH), School ofNon UBCMedicine, Faculty ofReviewedFacult
    corecore