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a b s t r a c t

Objectives: Develop statistical methods for survival models to indirectly adjust hazard ratios of
environmental exposures for missing risk factors.
Methods: A partitioned regression approach for linear models is applied to time to event survival
analyses of cohort study data. Information on the correlation between observed and missing risk factors
is obtained from ancillary data sources such as national health surveys. The relationship between the
missing risk factors and survival is obtained from previously published studies. We first evaluated the
methodology using simulations, by considering the Weibull survival distribution for a proportional
hazards regression model with varied baseline functions, correlations between an adjusted variable and
an adjustment variable as well as selected censoring rates. Then we illustrate the method in a large,
representative Canadian cohort of the association between concentrations of ambient fine particulate
matter and mortality from ischemic heart disease.
Results: Indirect adjustment for cigarette smoking habits and obesity increased the fine particulate
matter-ischemic heart disease association by 3%–123%, depending on the number of variables considered
in the adjustment model due to the negative correlation between these two risk factors and ambient air
pollution concentrations in Canada. The simulations suggested that the method yielded small relative
bias (o40%) for most cohort designs encountered in environmental epidemiology.
Conclusions: This method can accommodate adjustment for multiple missing risk factors simultaneously
while accounting for the associations between observed and missing risk factors and between missing
risk factors and health endpoints.
Crown Copyright & 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The issue of bias from omitted variables that may confound an
association between a given outcome and exposure has been of
interest in occupational epidemiology for many years. The main
concern with many of these studies was that the sampling frame
often comprised records that did not include data on personal risk

factors, such as cigarette smoking. The nested case-control design
and case-cohort study are approaches that were developed to
address this challenge, with additional data on essential risk
factors gathered from a subset of the cohort, thereby reducing
costs considerably (Liddel et al., 1977; Langholz and Goldstein,
1996). Another approach to account for unmeasured confounding
involves partitioning the incidence rate into components repre-
senting the exposure and confounding variables, thereby allowing
for an indirect adjustment (Axelson, 1980). This method was
developed for the case of incidence rates of disease in relation to
a dichotomous exposure for a single risk factor, such as never/ever
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smoking cigarettes. This indirect adjustment approach was aug-
mented to estimate variances on the corrected rate ratios using
Monte Carlo simulations (Steenland and Greenland, 2004) and it
was further extended to account for an unmeasured continuous
exposure variable for a single categorical risk factor (Villeneuve
et al., 2010). These indirect methods are limited because con-
founding is not usually restricted to a single categorical risk factor
but to several accepted risk factors that can take on several
possible functional forms.

We have encountered recently a similar problem of unmeasured
risk factors in conducting cohort studies of air pollution and health.
In this paper we illustrate a new method using a cohort study that
is a representative sample of the Canadian population. The study
makes use of a random sample of citizens who completed the 1991
Canadian census long-form and who were subsequently followed-
up in time to ascertain vital status and underlying cause of death
through a probabilistic record linkage to the Canadian National
Mortality Database up to 2001 (Wilkins
et al., 2008). We then linked estimates of ambient fine particulate
air pollution to the home address 6-digit postal code available in the
1991 census (van Donkelaar et al., 2010). Although some informa-
tion on known risk factors for mortality was available, such as
income, education, and occupation, other essential risk factors,
including cigarette smoking and measures of obesity, were not.

The credibility of such studies, although representative and
very large, depend on the extent to which personal risk factors
vary with exposure to ambient air pollution, and thus the question
is whether there is confounding from omitted variables. Often
these potentially confounding variables have complex inter-
relationships with exposure and also among the risk factors
themselves. Therefore, in studies with potentially important miss-
ing covariate information, further extensions of current methods
for indirect adjustment for missing variables are required to more
fully characterize the dependence of exposure and health.

In this paper we propose an indirect method to adjust regres-
sion coefficients of multiple covariates accounting for multiple
risk factors simultaneously that are not directly available in the
primary dataset. As with previous methods, our approach assumes
that there is ancillary information on important risk factors for the
health endpoint, (e.g., national health surveys) that are represen-
tative of the subjects in the cohort. We examine the validity of our
method by simulating a range of plausible scenarios for time to
event data. As an illustration, we then apply this method to an
analysis of air pollution and ischemic heart disease mortality in
the Canadian census cohort study.

2. Methods

Our method of indirect adjustment is motivated by the theory of partitioned
regression for linear regression models (Ruud, 2000). Let y be a vector of responses
of subjects related to two sets of predictors X and U: the matrix X represents the
covariates that are observed and thus available in the dataset at hand, and the
matrix U represents additional covariates as confounders that are not available
from the subjects in the study. We would ideally postulate a regression model of
the form:

Efyg ¼ XβþUλ; ð1Þ
which jointly models the two sets of covariates simultaneously and estimates two
sets of unknown parameter vectors β and λ together. Our primary interest is in
making inferences about some of the risk factors in X, such as air pollution,
adjusting for both the other risk factors in X and U. However, we have no
information on U in the current dataset and thus cannot directly calculate an
unbiased estimate of β.

By the theory of partitioned regression for linear regression models we can
write β̂ and λ̂, the least squares estimate of β and λ, respectively, as

β̂¼ ðX0XÞ�1X0ðy�Uλ̂Þ ¼ ðX0XÞ�1X0y�ðX0XÞ�1X0Uλ̂� γ̂�Δ̂λ̂; ð2Þ
where X0 is the transpose of X. The term ðX0XÞ�1X0ðy�Uλ̂Þ is the least squares
estimate of β based on the residual model Efy�Uλ̂g ¼ Xβ, with λ̂ from the full

model in Eq. (1). We decompose this term into two further terms: ðX0XÞ�1X0y,
which is the least squares estimate of γ defined with respect to the sub-model or
reduced model Efyg ¼ Xγ, not including U, and ðX0XÞ�1X0U, which is the least
squares estimate of Δ with respect to the multivariate linear model EfUg ¼ XΔ.

Here γ̂ is the estimate of the association between the covariates available in the
dataset and the response not adjusting for the set of missing covariates U, Δ̂ is the
estimate of the multivariate relationship between the observed covariates (X) and
the missing covariates (U), and λ̂ is the estimate of the association between the
missing covariates and the response after adjusting for the covariates in the dataset
at hand.

The problem is that we cannot simultaneously estimate Δ̂ and λ̂ from the
dataset at hand and thus require ancillary information. We propose to obtain λ̂
from the literature in which studies are conducted relating the risk factors U to the
response y simultaneously adjusting for the risk factors X. For most cases of interest
Δ̂ cannot be obtained from the literature. We propose to obtain Δ̂ from an ancillary
dataset, such as national health surveys that are representative of the cohort. Of
critical importance is that the amount and direction of confounding is specific to
any dataset and that the amount of bias in our indirect adjustments will depend on
how closely the variables in the ancillary dataset mirror both the distribution in
and relationships between the variables in the dataset at hand (Breslow and Day,
1980). Thus, it is important for our method that appropriate data be found that is
representative of the study population.

2.1. Indirect adjustment method for survival analysis

We focus only on cohort studies and we relate the time to event (e.g., mortality,
cancer incidence) to known predictors using the Cox Proportional Hazards regres-
sion model:

hðsÞðtÞ ¼ hðsÞ
o ðtÞexpfγ0xg ð3Þ

where hðsÞðtÞ is the instantaneous probability or hazard of the occurrence of an
event at time t for a subject in stratum s, γ is an unknown parameter vector relating
the vector of covariates x to the hazard function with hðsÞo ðtÞ the baseline hazard
function defined as the hazard when x¼ 0. Strata are often defined by age–sex
groupings.

Although we have shown for multiple linear regression models that a simple
decomposition of measured and unmeasured risk factors can be used to solve the
missing data problem, the Cox model does not admit a closed-form solution. Thus,
the indirect adjustment Eq. (2) can only be strictly interpreted as a partitioned
regression for linear models. A partitioned regression formulation for non-linear
models including the Cox model would involve partial derivatives of the log-
likelihood function when forming the adjustment factors Δ. Some information
contained in these derivatives, such as risk sets in a Cox partial likelihood, would
not be available in an ancillary dataset. Thus Δ could not be determined explicitly.
However, we argue by analogy that the above formulation for linear regression
should apply. To show that in fact this analogy appears to be reasonable for many
cases of interest, we carry out a series of simulations using realistic designs.

Consider that we have L covariates available in the dataset from the cohort
study with the estimates of regression parameters γ̂. We wish to indirectly adjust
these parameter estimates for a set of R missing risk factors. Let ~U be an n� R
design matrix of the R risk factors for n subjects from the ancillary dataset for the
missing risk factors of interest. Further let ~X be an n� L design matrix of the L risk
factors that are available in the cohort with values obtained from the ancillary
dataset.

The indirectly adjusted parameter vector, ~β , is given by

~β ¼ γ̂�ð ~X 0 ~X
�1Þ ~X 0 ~U ~λ � γ̂� ~Δ ~λ ð4Þ

where ~λ is a R� 1 vector of the regression parameter estimates of the R risk factors
on the response obtained from the literature. We note that the indirect adjustment
for the lth regression parameter ~β l is given by ~β l ¼ γ̂l� ~Δ ðlÞ ~λ , where ~Δ ðlÞ is the lth
row of ~Δ . Here ~Δ ðlÞ and ~λ are independent and both random. We assume the
variance of each vector component, varð ~Δ ðlrÞÞ and varð ~λrÞ, is small enough to have
varð ~Δ ðlrÞÞnvarð ~λrÞ ¼ 0. Then the variance of ~β l is given by asymptotic approximation
(Goodman, 1960; Bohrnstedt and Goldberge, 1969):

varð ~β lÞ ¼ varðγ̂lÞþ ~Δ ðlÞCovð ~λÞ ~Δ
0
ðlÞ þ ~λ

0
Covð ~Δ ðlÞÞ ~λ ð5Þ

with varðγ̂lÞ obtained directly from the primary dataset analysis model. Here Covð ~λÞ
is obtained from the literature and

Covð ~Δ ðlÞÞ ¼ ð ~X 0 ~X Þ�1
ðl;lÞ n

~Σ ð6Þ

where

~Σ ¼ ~U
0ðIn� ~X ð ~X 0 ~X Þ�1 ~X

0Þ ~U=n ð7Þ
with ð ~X 0 ~X Þ�1

ðl;lÞ the lth diagonal element of ð ~X 0 ~X Þ�1 and In an identity matrix of
ordern (Timm, 2002). The variance of the indirectly adjusted regression parameter
~β l is a function of the uncertainty in the parameter estimate not adjusted based on
the cohort, varðγ̂lÞ, the uncertainty in the estimates of the association between the
missing risk factors and survival based on the literature, Covð ~λÞ, and the uncertainty
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in the estimates of the association between the observed risk factors in the cohort
and the missing risk factors based on ancillary dataset, Covð ~Δ ðlÞÞ.

For the Cox proportional hazards survival model the indirect adjustment can be
written in terms of hazard ratios. Denote the hazard ratio for the lth indirectly
adjusted variable by HRadj

l ¼ expf ~β lg, the hazard ratio not adjusted for the missing
covariates byHRunadj

l ¼ expfγ̂lg, and the hazard ratio of the rth missing covariate by
HRr ¼ expf ~λrg. Then we have the indirectly adjusted hazard ratio

HRadj
l ¼ HRunadj

l

∏R
r ¼ 1HR

~Δ ðl;rÞ
r

; ð8Þ

where ~Δ ðl;rÞ is the ðl; rÞ element of ~Δ representing the estimate of the linear
association between the lth indirectly adjusted variable and the rth adjustment
variable within a multivariate regression model. The amount of adjustment is
dependent on the magnitude of both the hazard ratios of the adjustment variables
and the association between the adjusted and adjustment variables.

2.2. Illustration 1: a dichotomous exposure variable and a dichotomous omitted
variable

To further illustrate the indirect adjustment method, consider the case in which
we have a dichotomous exposure, occupational exposure to a chemical for
example, and want to indirectly adjust for a dichotomous variable such as current
cigarette smoking. Let the hazard ratio of the exposure on some response, for
example lung cancer, adjusted for age and sex but not adjusted for smoking be
denoted by HRunadj and the hazard ratio of current cigarette smoking on lung cancer
be denoted by HRsmoking . From an ancillary dataset, suppose we know the
proportion of subjects that are exposed, pe , the proportion of subjects who smoke,
ps , and the proportion of subjects that are exposed who smoke, pse . The indirect
adjustment formula for this case is

HRadj ¼
HRunadj

HRpse �peps
smoking

: ð9Þ

If exposure is independent of cigarette smoking then we have pse ¼ peps and the
adjusted and unadjusted hazard ratios are the same. If proportionally more subjects
in the exposed group are cigarette smokers compared to the unexposed group,
then pse4peps and the effect of the indirect adjustment would be to reduce the
hazard ratio. Similarly, if proportionally fewer subjects in the exposed group were
cigarette smokers then pseopeps and the adjusted hazard would be larger than the
unadjusted hazard ratio.

2.3. Illustration 2: a continuous exposure variable and a continuous omitted variable

Now consider the case of a single continuous variable, x, whose regression
coefficient is to be adjusted and a single continuous adjustment variable, u. Then
the indirect adjustment formula is given by

~β ¼ γ̂� ρ̂
su
sx

� �
~λ ð10Þ

where ρ̂ is the empirical Pearson correlation between x and u with su and sx the
standard deviations of u and x respectively (Montgomery et al., 2006). When
su ¼ sx , the indirect adjustment formula written in terms of hazard ratios is

HRadj ¼HRunadj

ðHRuÞρ̂
ð11Þ

where HRu is the hazard ratio for the adjustment variable u. If x and u are
uncorrelated (i.e. ρ̂¼ 0), then HRadj ¼HRunadj . If x and u are positively correlated,
then HRadjoHRunadj and if negatively correlated then HRadj4HRunadj .

3. Results

3.1. Simulation study

We assessed the validity of our indirect adjustment method
using a simulation study whose details are given in Appendix.
Briefly, we considered two variables x (i.e., air pollution) and u (i.e.,
smoking), with x as the adjusted variable and u as the adjustment
variable. One ten thousand realizations of these two variables
were generated assuming a standard bivariate normal distribution
with correlation either 0.2 or 0.5. For each pair of ðx;uÞ we
simulated 30,000 event times from a Weibull distribution with
scale parameter defined as a log-linear function of x and u.
We varied the shape parameter of the Weibull distribution such
that the baseline hazard function increased with the power of

follow-up time. We selected values of the shape parameter from
1 to 5, where the power of time is the shape value minus 1. For
example, when the shape parameter equals unity the baseline
hazard is a constant, as the hazard ratio is no longer dependent on
time. We also simulated Weibull censoring times with 0.9 and
0.5 censoring rates such that approximately 10 or 50% of the
subjects experienced an event. The unknown regression para-
meter associated with x was defined such that the hazard ratio of
the parameter multiplied by the negative of the shape parameter
evaluated at the range of x was 1.5, a value typical of hazard ratios
in mortality studies of air pollution. The unknown parameter
associated with u was defined such that the ratio of the hazard
ratio relating x to a response and the hazard ratio relating u to the
response were 1,2,4,8, or 16. For example, if the hazard ratio for air
pollution was 1.5, the hazard ratio for current cigarette smoking
could be as large as 1.5�16¼24.

To obtain estimates, we applied Weibull regression model and
Cox Proportional-Hazards (Cox PH) model to both the full and
reduced models. The risk estimates from both models were quite
close to each other, and thus we report the risk estimates from Cox
PH model only.

We summarize the adequacy of our method by calculating
relative bias of adjusted risk (j ~β� β̂j=β), and unadjusted risk
(jγ̂� β̂j=β), where ~β and γ̂ are the respective adjusted and
unadjusted estimates, β̂ is the estimate from full model, which is
believed as the best estimate, and β is the true value set up for the
simulation. The bias represents the mean difference among the
30,000 simulations of the estimate of the parameter associated
with x in the full model including u, and the corresponding
indirectly adjusted parameter estimate, divided by the true value
of the parameter. These relative biases are summarized in Table 1
by the ratio of the hazard ratios between x and u (1,2,4,8, or 16),
the censoring rate (0.9 or 0.5), and the correlation between x and u
(0.2 or 0.5).

The relative bias was insensitive to the Weibull shape para-
meter (see Table A1), but increased as the ratio of the hazards
ratios of the two variables, the correlation among variables, and
the censoring rate increased. Table 1 summarizes the amount of
bias by the censoring rate, hazards ratios, and correlation as
averaged over all shape parameter values. As expected, the
reduced model mostly over-estimated the risk, but the adjusted
risk estimates were close to the full model risk estimates.
The relative bias in the unadjusted HRs of x is also reported in

Table 1
Percent relative bias (difference between adjusted or unadjusted risk estimate and
full model risk estimate compared to the the true risk value) by censoring rate and
hazard ratio of two regression coeeficients for two correlations between the
variables (cor¼0.2 and cor¼0.5).

Censoring rate Hazard ratio Adjusteda Unadjustedb

cor¼0.2 cor¼0.5 cor¼0.2 cor¼0.5

0.5 1 0.1 0.1 20.1 45.2
2 1.2 1.4 53.5 121.3
4 3.6 4.8 85.5 195.3
8 8.0 11.1 115.7 266.4

16 14.5 20.9 143.6 333.9

0.9 1 0.3 0.2 19.9 45.1
2 2.3 2.6 52.4 120.0
4 7.0 8.8 82.1 191.1
8 14.8 20.0 108.8 257.4

16 25.6 36.6 132.4 318.4

a ðj ~β� β̂j=βÞ � 100, where ~β is the adjusted estimates, β̂ is the estimate from full
model, which is believed as the best estimate, and β is the true value.

b ðjγ̂� β̂j=βÞ � 100, where γ̂ is the unadjusted estimates from the reduced
model, β̂ is the estimate from full model, which is believed as the best estimate,
and β is the true value.
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Table 1. These relative biases are much larger than their adjusted
counterparts demonstrating the effect of the indirect adjustment
approach.

3.2. An example of fine particulate air pollution and mortality
in a national cohort study

The association between long-term exposure to ambient con-
centrations of fine particulate matter (particles with aerodynamic
diameter less than 2.5 mm) and cause-specific mortality has been
estimated in Canada in a subset of the Census Cohort (Crouse et al.,
2012). The cohort was composed of Canadians 25 years of age and
older who completed the 1991 Census long form (20% of popula-
tion) and whose records were subsequently linked to the Canadian
Mortality Database (from June 4, 1991 to December 31, 2001) using
deterministic and probabilistic linkage methods (Wilkins et al.,
2008). In this example, we included only those subjects who were
non-immigrants, leaving approximately 2.1 million subjects.
Immigrants to Canada are healthier and thus survive longer than
native born Canadians (Wilkins et al., 2008). In addition, they tend
to live in larger cities with higher pollution exposures (Crouse
et al., 2012). We assigned 2001–2006 average concentrations of
fine particulate matter to each subject0s home address six-
character postal code in 1991 based on satellite remote sensing
observations (van Donkelaar et al., 2010). The six-character postal
code represents a block face in cities but can represent a much
larger area in rural settings.

Several mortality risk factors recorded on the long-form census
were included in the survival model (i.e. income, education,
occupation, marital status, aboriginal status, employment status,
visible minority, and size of community). The baseline hazard
function was stratified by single year age groups and sex. However,
cigarette smoking habits and obesity status, two important risk
factors for ischemic heart disease mortality, were not available.

We wished to indirectly adjust the regression coefficient for fine
particulate matter for these two missing covariates by characteriz-
ing cigarette smoking habits using two binary variables: former
versus never cigarette smoker and current versus never smoker. As
well, body mass index (kg/m2) was characterized using four binary
variables describing ranges 25–30, 30–35, 35–40, and 440 kg/m2

compared to o25 kg/m2. We obtained from the American Cancer
Society Cancer Prevention II (ACS) cohort (Pope et al., 2004) hazard
ratio estimates for current versus never smokers (HR¼2.03; 95%CI:
1.96–2.10) and former smokers (HR¼1.35; 95%CI: 1.29–1.37).
We also obtained an estimate of the hazard ratio of mortality
due to ischemic heart disease associated with body mass index
(Prospective Studies Collaboration, 2009). The hazard ratio per 5 kg/
m2 increase in body mass index above 25 kg/m2 was 1.39 (95%CI:
1.34–1.44). We then calculated the hazard ratio based on the
difference between the group mean body mass index from our
ancillary dataset (see below) and 25 kg/m2 (Table 2).

The association between the variables that were included
in the survival model (age, sex, fine particulates, income, education,
occupation, marital status, aboriginal status, employment status,
visible minority, and size of community) and the six in-
direct adjustment variables was also required. This relationship
was estimated using the Canadian Community Health Survey
(Statistics Canada, 2003), a bi-annual, national, population-based
cross-sectional survey of Canadians that started in 2001. We
first assigned the remote sensing-based concentrations of fine
particulate matter to the centroid of the home address of the
six-character postal code of all subjects in the 2001, 2003, and 2005
panels (sample size of 188,617 subjects) of the Canadian Commu-
nity Health Survey who were 25 years of age or older and who were

born in Canada. These panels were selected to coincide with the
2001–2006 average fine particulate matter concentrations.

We included in the design matrix, ~X , data from the Canadian
Community Health Survey for the same variables and category
definitions as in the survival model applied to the census cohort.
We added a column of 1s to represent the baseline hazard function
and indicator variables for age–sex interactions to represent the
stratification of the baseline hazard by age and sex.

The elements of the ~Δ matrix corresponding to fine particulate
matter are presented in Table 2 for three scenarios. In the first scenario
we included a column of 1s and fine particulate matter concentrations
only, denoted by None. In the second scenario we also included
indictor variables for the age–sex interaction, denoted by Age–Sex. In
the third scenario we additionally included all the variables that were
included in the survival model, denoted by All Variables.

Negative associations were observed between concentrations
of fine particulate matter and both current and former cigarette
smokers for the None and Age–Sex scenarios (Table 2). However,
the association decreased by an order of magnitude for the All
Variables scenario. We observed a negative association between
concentrations of fine particulate matter and all four body mass
index categories for the None scenario. However, these associa-
tions were null for the two lowest body mass index categories for
both the Age–Sex and All Variables scenarios (Table 2). The
association between fine particulate matter and the two highest
body mass index categories decreased by several orders of magni-
tude for both the Age–Sex and All Variables scenarios compared to
the None scenario. Including all the variables in the indirect
adjustment that were included in the survival model appears to
have explained most of the association between fine particulate
matter and all six adjustment variables.

The indirectly adjusted hazard ratio for an increase of 10 μg/m3

in fine particulate matter was substantially larger (HR¼1.82; 95%
CI: 1.73–1.90; for the None scenario compared to the hazard ratio
without any indirect adjustment (HR¼1.31; 95% CI: 1.27–1.34).
This was due to the strong negative associations between fine
particulate matter and either cigarette smoking or body mass
index (Table 2). The indirectly adjusted hazard ratio under the
Age–Sex scenario was smaller (HR¼1.36; 95% CI: 1.32–1.41)
compared to the None scenario, mostly due to the much weaker
association between fine particulate matter and all four categories
of body mass index. The indirect adjustment had little effect on
the hazard ratio (HR¼1.32; 95% CI: 1.28–1.36) for the All Variables
scenario compared to the hazard ratio without any indirect
adjustment, since these additional variables were explaining much
of the association between fine particulate matter and the adjust-
ment variables.

The standard error of the indirectly adjusted regression coeffi-
cient, ~β , increased by 69%, 7%, and 2% for the None, Age–Sex, and
All Variables scenarios respectively compared to the standard
error of the coefficient not indirectly adjusted, γ̂. Reductions in
both the adjustment values, ~ΔðlÞ, and uncertainty in these values,
resulted in smaller standard errors as the number of variables
contained in the adjustment matrix, ~X , increased.

4. Discussion

We proposed a new methodology based on partitioned regres-
sion to indirectly adjust risk estimates for potentially important
confounding variables that are missing. Our methods incorporate
indirect adjustment for several missing confounding variables
simultaneously in addition to controlling for the relationship
between observed variables of primary interest and missing
variables. We placed no restrictions on the form of the primary
variables (continuous, categorical) or the form of the missing
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variables (continuous, categorical). We obtained closed form
expressions for the variance of the adjusted parameter estimates,
Eq. (5), thus alleviating the need to use simulation approaches as
suggested previously (Steenland and Greenland, 2004).

Based on the results of our simulation study, indirect adjust-
ment approach yielded only a small amount of relative bias less
than 20% for all realistic scenarios examined. For each death time,
the covariates of the subject who experienced the fatality are
compared to the covariates of the set of subjects alive at that time
for the Cox partial likelihood. Thus only a small subset of covariate
information is assigned to subjects who die when the censoring
rate is very high, such as 0.9. However, the covariate values of all
subjects are included in the indirect adjustment formula based on
information obtained by the ancillary dataset. Even if the covariate
information obtained by the ancillary data are in fact representa-
tive of the corresponding covariate information from the entire
cohort, that subset of information based on those subjects who
died may not be as representative.

We also note that the correlation between fine particulate
matter concentrations and the six indicator variables representing
cigarette smoking habits or BMI that were used in the indirect
adjustment for the Canadian Census cohort ranged from �0.04 to
�0.02. We would then expect little bias in our indirect adjustments
based on these very modest correlations in the example presented.

An important aspect of this approach depends on the repre-
sentativeness of the ancillary information. Representativeness, like
validity, is based on whether the population that provided the
ancillary data is drawn from the same target population as the
cohort or is otherwise similar in important respects, such as age,
sex, health status, and geographic coverage. As well, similarity
between studies in the type of data that has been collected will
also be important; e.g., similar questions on income, education,
occupation. In our example of air pollution and mortality, we were
able to select subjects in the ancillary dataset with similar
characteristics (e.g., age, immigration status, geographic areas),
to assign to each subject in the ancillary dataset concentrations of
air pollution that were based on the same exposure model as we
used in the primary dataset, and the definitions of the available
covariates were the same in the Census Cohort and the Canadian
Community Health Survey.

Our indirect adjustment method estimates the association
between the missing factors and the available factors contained
in the survival model using ancillary information. We do not

attempt to estimate the missing risk factors directly from the
ancillary information as has been suggested (Mason et al., 2012).
The accuracy of the missing risk factor estimate model is depen-
dent on the quality of information needed to predict the missing
risk factor, which may be limited for the dataset at hand. For
example, it is likely that poor predictions of missing risk factors
would be obtained if covariate information from the dataset at
hand is limited to a few variables such as age and sex. Since our
method does not rely on predicting missing information we are
not subject to this limitation.

We make the following recommendations on assessing the
adequacy of the ancillary health studies in representing the cohort
study. We first suggest that the distribution of air pollution among
subjects in both the cohort and health survey be examined.
Second, the correlation amongst the variables available in the
cohort (i.e. education, income) should be examined and compared
to the correlation amongst the same variables in the health survey.
Concerns should be raised about using the ancillary data if these
distributions or correlations are not similar. Third, survival models
could be examined for which specific variables are excluded. The
corresponding air pollution Hazard Ratio could be indirectly
adjusted for those excluded variables using the ancillary health
survey and compared to the Hazard Ratio based on a survival
model consisting of both the variables included in the survival
model and those excluded. The Hazard Ratio of the excluded
covariates, needed for the indirect adjustment, could be obtained
from the survival model with complete representation of the all
the covariates. The air pollution Hazard ratio estimate based on
the full model should be similar to that based on the reduced
survival model after indirect adjustment.

We suggest that our indirect adjustment approach could be
applied to cases other than a survival model. For example for
logistic or Poisson regression models as long as the covariate
information enters the model as a linear combination as is the case
here. Clearly, this hypothesis needs to be supported by appropriate
simulation studies.

In summary, we proposed a new method to indirectly adjust
risk estimates obtained from survival models for multiple missing
covariates (either continuous or categorical) simultaneously. We
have demonstrated by simulation that this method performs
adequately in correcting bias from missing covariates in most
situations of interest in environment epidemiology.

Table 2
Quantities for smoking and body mass index (BMI) required for indirectly adjusting the association between mortality from ischemic heart disease and concentrations of fine
particulate matter.

Missing risk factor Percent in the Canadian community health survey Log-hazard ratio (standard error) Associations between smoking and BMI
with concentrations of fine particulate
matter from the Canadian community
health survey

Variables Included in Adjustment Model

None Age–Sex All variables

Smoker reference category
Never smoker 25.7 NA NA NA NA
Current smoker 30.5 0.70804 (0.00031) �0.003645 �0.004032 0.000746
Former smoker 43.8 0.30010 (0.00024) �0.006530 �0.005597 �0.000746

BMI reference category
BMIo25 kg/m2 44.6 NA NA NA NA
25rBMIo30 (27.25 kg/m2)a 35.9 0.14842 (0.00008) �0.008664 �0 �0
30rBMIo35 (31.97 kg/m2)a 13.7 0.45742 (0.00039) �0.009512 �0 �0
35rBMIo40 (36.93 kg/m2)a 4.0s 0.78390 (0.00195) �0.010633 0.000234 �0.000392
BMIZ40 (44.52 kg/m2)a 1.8 1.28647 (0.00515) �0.011261 0.000005 �0.000644

a BMI group mean.
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